Hideshima T et al. (MAY 2006)
Blood 107 10 4053--62
Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells.
Perifosine is a synthetic novel alkylphospholipid,a new class of antitumor agents which targets cell membranes and inhibits Akt activation. Here we show that baseline phosphorylation of Akt in multiple myeloma (MM) cells is completely inhibited by perifosine [octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate] in a time- and dose-dependent fashion,without inhibiting phosphoinositide-dependent protein kinase 1 phosphorylation. Perifosine induces significant cytotoxicity in both MM cell lines and patient MM cells resistant to conventional therapeutic agents. Perifosine does not induce cytotoxicity in peripheral blood mononuclear cells. Neither exogenous interleukin-6 (IL-6) nor insulinlike growth factor 1 (IGF-1) overcomes Perifosine-induced cytotoxicity. Importantly,Perifosine induces apoptosis even of MM cells adherent to bone marrow stromal cells. Perifosine triggers c-Jun N-terminal kinase (JNK) activation,followed by caspase-8/9 and poly (ADP)-ribose polymerase cleavage. Inhibition of JNK abrogates perifosine-induced cytotoxicity,suggesting that JNK plays an essential role in perifosine-induced apoptosis. Interestingly,phosphorylation of extracellular signal-related kinase (ERK) is increased by perifosine; conversely,MEK inhibitor synergistically enhances Perifosine-induced cytotoxicity in MM cells. Furthermore,perifosine augments dexamethasone,doxorubicin,melphalan,and bortezomib-induced MM cell cytotoxicity. Finally,perifosine demonstrates significant antitumor activity in a human plasmacytoma mouse model,associated with down-regulation of Akt phosphorylation in tumor cells. Taken together,our data provide the rationale for clinical trials of perifosine to improve patient outcome in MM.
View Publication
产品类型:
产品号#:
15129
15169
产品名:
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
McKenna KC and Kapp JA (AUG 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 3 1599--608
Accumulation of immunosuppressive CD11b+ myeloid cells correlates with the failure to prevent tumor growth in the anterior chamber of the eye.
The purpose of these studies is to determine why an immunogenic tumor grows unchecked in the anterior chamber (a.c.) of the eye. The OVA-expressing EL4 tumor,E.G7-OVA,was injected into the a.c. or skin of immunocompetent and immunodeficient mice. Tumor growth and tumor-specific immune responses were monitored. Ocular tumor-infiltrating leukocytes were characterized phenotypically and functionally. Growth of E.G7-OVA was inhibited when limiting numbers of cells were injected in the skin but not in the a.c. of C57BL/6 mice,although both routes primed OVA-specific immune responses,which prevented the growth of a subsequent injection with E.G7-OVA in the skin or opposite eye. Tumor regression was OVA-specific because growth of the parental EL-4 tumor was not inhibited in primed mice. E.G7-OVA growth in the skin was not inhibited in immunodeficient Rag(-/-) or CD8 T cell-deficient mice,suggesting that CD8(+) CTLs mediate tumor elimination. CD8(+) T cell numbers were significantly increased in eyes of mice primed with E.G7-OVA,but few were detected in primary ocular tumors. Nevertheless,growth of E.G7-OVA was retarded in the a.c. of TCR-transgenic OT-I mice,and CD8(+) T cell numbers were increased within eyes,suggesting that tumor-specific CD8(+) CTLs migrated into and controlled primary ocular tumor growth. E.G7-OVA did not lose antigenicity or become immunosuppressive after 13 days of growth in the eye. However,CD11b(+) cells accumulated in primary ocular tumors and contained potent immunosuppressive activity when assayed in vitro. Thus,CD11b(+) cells that accumulate within the eye as tumors develop in the a.c. may contribute to immune evasion by primary ocular tumors by inhibiting CTLs within the eye.
View Publication
产品类型:
产品号#:
18770
18770RF
18554
18554RF
18564
18564RF
产品名:
Frecha C et al. (OCT 2009)
Blood 114 15 3173--80
Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors.
Up to now,no lentiviral vector (LV) tool existed to govern efficient and stable gene delivery into quiescent B lymphocytes,which hampers its application in gene therapy and immunotherapy areas. Here,we report that LVs incorporating measles virus (MV) glycoproteins,H and F,on their surface allowed transduction of 50% of quiescent B cells,which are not permissive to VSVG-LV transduction. This high transduction level correlated with B-cell SLAM expression and was not at cost of cell-cycle entry or B-cell activation. Moreover,the naive and memory phenotypes of transduced resting B cells were maintained. Importantly,H/F-LVs represent the first tool permitting stable transduction of leukemic cancer cells,B-cell chronic lymphocytic leukemia cells,blocked in G(0)/G(1) early phase of the cell cycle. Thus,H/F-LV transduction overcomes the limitations of current LVs by making B cell-based gene therapy and immunotherapy applications feasible. These new LVs will facilitate antibody production and the study of gene functions in these healthy and cancer immune cells.
View Publication
产品类型:
产品号#:
05350
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
Trzonkowski P et al. (OCT 2009)
Clinical immunology (Orlando,Fla.) 133 1 22--6
First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells.
Here,we describe a procedure and first-in-man clinical effects of adoptive transfer of ex vivo expanded CD4+CD25+CD127- T regulatory cells (Tregs) in the treatment of graft versus host disease (GvHD). The cells were sorted from buffy coats taken from two family donors,expanded ex vivo and transferred to respective recipients who suffered from either acute or chronic GvHD. The therapy allowed for significant alleviation of the symptoms and reduction of pharmacologic immunosuppression in the case of chronic GvHD,while in the case of grade IV acute GvHD it only transiently improved the condition,for the longest time within all immunosuppressants used nonetheless.
View Publication
产品类型:
产品号#:
19052
19052RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
Vacca P et al. (DEC 2006)
Blood 108 13 4078--85
Analysis of natural killer cells isolated from human decidua: Evidence that 2B4 (CD244) functions as an inhibitory receptor and blocks NK-cell function.
While during the first trimester of pregnancy natural killer (NK) cells represent the most abundant lymphocyte population in the decidua,their actual function at this site is still debated. In this study we analyzed NK cells isolated from decidual tissue for their surface phenotype and functional capability. We show that decidual NK (dNK) cells express normal surface levels of certain activating receptors,including NKp46,NKG2D,and 2B4,as well as of killer cell immunoglobulin-like receptors (KIRs) and CD94/NKG2A inhibitory receptor. In addition,they are characterized by high levels of cytoplasmic granules despite their CD56(bright) CD16- surface phenotype. Moreover,we provide evidence that in dNK cells,activating NK receptors display normal triggering capability whereas 2B4 functions as an inhibitory receptor. Thus,cross-linking of 2B4 resulted in inhibition of both cytolytic activity and interferon-gamma (IFN-gamma) production. Clonal analysis revealed that,in the majority of dNK cell clones,the 2B4 inhibitory function is related to the deficient expression of signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) mRNA. Moreover,biochemical analysis revealed low levels of SAP in the dNK polyclonal population. This might suggest that dNK cells,although potentially capable of killing,are inhibited in their function when interacting with cells expressing CD48.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Jeffery LE et al. (NOV 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 9 5458--67
1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3.
The active form of vitamin D,1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)),has potent immunomodulatory properties that have promoted its potential use in the prevention and treatment of infectious disease and autoimmune conditions. A variety of immune cells,including macrophages,dendritic cells,and activated T cells express the intracellular vitamin D receptor and are responsive to 1,25(OH)(2)D(3.) Despite this,how 1,25(OH)(2)D(3) regulates adaptive immunity remains unclear and may involve both direct and indirect effects on the proliferation and function of T cells. To further clarify this issue,we have assessed the effects of 1,25(OH)(2)D(3) on human CD4(+)CD25(-) T cells. We observed that stimulation of CD4(+)CD25(-) T cells in the presence of 1,25(OH)(2)D(3) inhibited production of proinflammatory cytokines including IFN- gamma,IL-17,and IL-21 but did not substantially affect T cell division. In contrast to its inhibitory effects on inflammatory cytokines,1,25(OH)(2)D(3) stimulated expression of high levels of CTLA-4 as well as FoxP3,the latter requiring the presence of IL-2. T cells treated with 1,25(OH)(2)D(3) could suppress proliferation of normally responsive T cells,indicating that they possessed characteristics of adaptive regulatory T cells. Our results suggest that 1,25(OH)(2)D(3) and IL-2 have direct synergistic effects on activated T cells,acting as potent anti-inflammatory agents and physiologic inducers of adaptive regulatory T cells.
View Publication
产品类型:
产品号#:
14052
产品名:
Spaggiari GM et al. (FEB 2006)
Blood 107 4 1484--90
Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation.
In recent years,mesenchymal stem cells (MSCs) have been shown to inhibit T-lymphocyte proliferation induced by alloantigens or mitogens. However,no substantial information is available regarding their effect on natural killer (NK) cells. Here we show that MSCs sharply inhibit IL-2-induced proliferation of resting NK cells,whereas they only partially affect the proliferation of activated NK cells. In addition,we show that IL-2-activated NK cells (but not freshly isolated NK cells) efficiently lyse autologous and allogeneic MSCs. The activating NK receptors NKp30,NKG2D,and DNAM-1 represented the major receptors responsible for the induction of NK-mediated cytotoxicity against MSCs. Accordingly,MSCs expressed the known ligands for these activating NK receptors-ULBPs,PVR,and Nectin-2. Moreover,NK-mediated lysis was inhibited when IFN-gamma-exposed MSCs were used as target cells as a consequence of the up-regulation of HLA class I molecules at the MSC surface. The interaction between NK cells and MSCs resulted not only in the lysis of MSCs but also in cytokine production by NK cells. These results should be taken into account when evaluating the possible use of MSCs in novel therapeutic strategies designed to improve engraftment or to suppress graft-versus-host disease (GVHD) in bone marrow transplantation.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Pereira LE et al. (MAY 2007)
Journal of virology 81 9 4445--56
Simian immunodeficiency virus (SIV) infection influences the level and function of regulatory T cells in SIV-infected rhesus macaques but not SIV-infected sooty mangabeys.
Differences in clinical outcome of simian immunodeficiency virus (SIV) infection in disease-resistant African sooty mangabeys (SM) and disease-susceptible Asian rhesus macaques (RM) prompted us to examine the role of regulatory T cells (Tregs) in these two animal models. Results from a cross-sectional study revealed maintenance of the frequency and absolute number of peripheral Tregs in chronically SIV-infected SM while a significant loss occurred in chronically SIV-infected RM compared to uninfected animals. A longitudinal study of experimentally SIV-infected animals revealed a transient increase in the frequency of Tregs from baseline values following acute infection in RM,but no change in the frequency of Tregs occurred in SM during this period. Further examination revealed a strong correlation between plasma viral load (VL) and the level of Tregs in SIV-infected RM but not SM. A correlation was also noted in SIV-infected RM that control VL spontaneously or in response to antiretroviral chemotherapy. In addition,immunofluorescent cell count assays showed that while Treg-depleted peripheral blood mononuclear cells from RM led to a significant enhancement of CD4+ and CD8+ T-cell responses to select pools of SIV peptides,there was no detectable T-cell response to the same pool of SIV peptides in Treg-depleted cells from SIV-infected SM. Our data collectively suggest that while Tregs do appear to play a role in the control of viremia and the magnitude of the SIV-specific immune response in RM,their role in disease resistance in SM remains unclear.
View Publication
产品类型:
产品号#:
18557
18557RF
15809
产品名:
Le Y et al. (MAR 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 5 2582--90
CXC chemokine ligand 12-induced focal adhesion kinase activation and segregation into membrane domains is modulated by regulator of G protein signaling 1 in pro-B cells.
CXCL12-induced chemotaxis and adhesion to VCAM-1 decrease as B cells differentiate in the bone marrow. However,the mechanisms that regulate CXCL12/CXCR4-mediated signaling are poorly understood. We report that after CXCL12 stimulation of progenitor B cells,focal adhesion kinase (FAK) and PI3K are inducibly recruited to raft-associated membrane domains. After CXCL12 stimulation,phosphorylated FAK is also localized in membrane domains. The CXCL12/CXCR4-FAK pathway is membrane cholesterol dependent and impaired by metabolic inhibitors of G(i),Src family,and the GTPase-activating protein,regulator of G protein signaling 1 (RGS1). In the bone marrow,RGS1 mRNA expression is low in progenitor B cells and high in mature B cells,implying developmental regulation of CXCL12/CXCR4 signaling by RGS1. CXCL12-induced chemotaxis and adhesion are impaired when FAK recruitment and phosphorylation are inhibited by either membrane cholesterol depletion or overexpression of RGS1 in progenitor B cells. We conclude that the recruitment of signaling molecules to specific membrane domains plays an important role in CXCL12/CXCR4-induced cellular responses.
View Publication
产品类型:
产品号#:
产品名:
Korpi-Steiner NL et al. (DEC 2006)
Journal of leukocyte biology 80 6 1364--74
Human rhinovirus induces robust IP-10 release by monocytic cells, which is independent of viral replication but linked to type I interferon receptor ligation and STAT1 activation.
Human rhinovirus (HRV)-induced respiratory infections are associated with elevated levels of IFN-gamma-inducible protein 10 (IP-10),which is an enhancer of T lymphocyte chemotaxis and correlates with symptom severity and T lymphocyte number. Increased IP-10 expression is exhibited by airway epithelial cells following ex vivo HRV challenge and requires intracellular viral replication; however,there are conflicting reports regarding the necessity of type I IFN receptor ligation for IP-10 expression. Furthermore,the involvement of resident airway immune cells,predominantly bronchoalveolar macrophages,in contributing to HRV-stimulated IP-10 elaboration remains unclear. In this regard,our findings demonstrate that ex vivo exposure of human peripheral blood monocytes and bronchoalveolar macrophages (monocytic cells) to native or replication-defective HRV serotype 16 (HRV16) resulted in similarly robust levels of IP-10 release,which occurred in a time- and dose-dependent manner. Furthermore,HRV16 induced a significant increase in type I IFN (IFN-alpha) release and STAT1 phosphorylation in monocytes. Neutralization of the type I IFN receptor and inhibition of JAK or p38 kinase activity strongly attenuated HRV16-stimulated STAT1 phosphorylation and IP-10 release. Thus,this work supports a model,wherein HRV16-induced IP-10 release by monocytic cells is modulated via autocrine/paracrine action of type I IFNs and subsequent JAK/STAT pathway activity. Our findings demonstrating robust activation of monocytic cells in response to native and/or replication-defective HRV16 challenge represent the first evidence indicating a mechanistic disparity in the activation of macrophages when compared with epithelial cells and suggest that macrophages likely contribute to cytokine elaboration following HRV challenge in vivo.
View Publication
产品类型:
产品号#:
15028
15068
产品名:
RosetteSep™ 人单核细胞富集抗体混合物
RosetteSep™人单核细胞富集抗体混合物
Belzile J-P et al. (APR 2014)
Journal of virology 88 8 4021--4039
Human cytomegalovirus infection of human embryonic stem cell-derived primitive neural stem cells is restricted at several steps but leads to the persistence of viral DNA.
UNLABELLED Congenital human cytomegalovirus (HCMV) infection is a major cause of central nervous system structural anomalies and sensory impairments. It is likely that the stage of fetal development,as well as the state of differentiation of susceptible cells at the time of infection,affects the severity of the disease. We used human embryonic stem (ES) cell-derived primitive prerosette neural stem cells (pNSCs) and neural progenitor cells (NPCs) maintained in chemically defined conditions to study HCMV replication in cells at the early stages of neural development. In contrast to what was observed previously using fetus-derived NPCs,infection of ES cell-derived pNSCs with HCMV was nonprogressive. At a low multiplicity of infection,we observed only a small percentage of cells expressing immediate-early genes (IE) and early genes. IE expression was found to be restricted to cells negative for the anterior marker FORSE-1,and treatment of pNSCs with retinoic acid restored IE expression. Differentiation of pNSCs into NPCs restored IE expression but not the transactivation of early genes. Virions produced in NPCs and pNSCs were exclusively cell associated and were mostly non-neural tropic. Finally,we found that viral genomes could persist in pNSC cultures for up to a month after infection despite the absence of detectable IE expression by immunofluorescence,and infectious virus could be produced upon differentiation of pNSCs to neurons. In conclusion,our results highlight the complex array of hurdles that HCMV must overcome in order to infect primitive neural stem cells and suggest that these cells might act as a reservoir for the virus. IMPORTANCE Human cytomegalovirus (HCMV) is a betaherpesvirus that is highly prevalent in the population. HCMV infection is usually asymptomatic but can lead to severe consequences in immunosuppressed individuals. HCMV is also the most important infectious cause of congenital developmental birth defects. Manifestations of fetal HCMV disease range from deafness and learning disabilities to more severe symptoms such as microcephaly. In this study,we have used embryonic stem cells to generate primitive neural stem cells and have used these to model HCMV infection of the fetal central nervous system (CNS) in vitro. Our results reveal that these cells,which are similar to those present in the developing neural tube,do not support viral replication but instead likely constitute a viral reservoir. Future work will define the effect of viral persistence on cellular functions as well as the exogenous signals leading to the reactivation of viral replication in the CNS.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Gilbert C et al. (JUL 2007)
Journal of virology 81 14 7672--82
Human immunodeficiency virus type 1 replication in dendritic cell-T-cell cocultures is increased upon incorporation of host LFA-1 due to higher levels of virus production in immature dendritic cells.
Dendritic cells (DCs) act as a portal for invasion by human immunodeficiency virus type-1 (HIV-1). Here,we investigated whether virion-incorporated host cell membrane proteins can affect virus replication in DC-T-cell cocultures. Using isogenic viruses either devoid of or bearing host-derived leukocyte function-associated antigen 1 (LFA-1),we showed that HIV-1 production is augmented when LFA-1-bearing virions are used compared to that for viral entities lacking this adhesion molecule. This phenomenon was observed in immature monocyte-derived DCs (IM-MDDCs) only and not in DCs displaying a mature phenotype. The increase is not due to higher virus production in responder CD4(+) T cells but rather is linked with a more important productive infection of IM-MDDCs. We provided evidence that virus-associated host LFA-1 molecules do not affect a late event in the HIV-1 life cycle but rather exert an effect on an early step in virus replication. We demonstrated that the enhancement of productive infection of IM-MDDCs that is conferred by virus-anchored host LFA-1 involves the protein kinase A (PKA) and PKC signal transduction pathways. The biological significance of this phenomenon was established by performing experiments with virus stocks produced in primary human cells and anti-LFA-1 antibodies. Together,our results indicate that the association between some virus-bound host proteins and their natural cognate ligands can modulate de novo HIV-1 production by IM-MDDCs. Therefore,the additional interactions between virus-bound host cell membrane constituents and counter receptors on the surfaces of DCs can influence HIV-1 replication in IM-MDDC-T-cell cocultures.
View Publication