Zhu F et al. (SEP 2014)
Stem cells and development 23 17 2119--2125
A modified method for implantation of pluripotent stem cells under the rodent kidney capsule.
Teratoma formation,the standard in vivo pluripotency assay,is also frequently used as a tumorigenicity assay. A common concern in therapeutic stem cell applications is the tumorigenicity potential of a small number of cell impurities in the final product. Estimation of this small number is hampered by the inaccurate methodology of the tumorigenicity assay. Hence,a protocol for tumorigenicity assay that can deliver a defined number of cells,without error introduced by leakage or migration of cells is needed. In this study,we tested our modified transplantation method that allows for transplant of small numbers of pluripotent stem cells (PSCs) under the kidney capsule with minimal cell leakage. A glass capillary with a finely shaped tip and an attached mouth pipette was used to inject PSCs into the rodent kidney capsule. H9 embryonic and induced PSCs were tagged with Fluc and green fluorescence protein reporter genes and divided in different cell doses for transplantation. Bioluminescence imaging (BLI) on the day of surgery showed that the cell signal was confined to the kidney and signal intensity correlated with increasing transplant cell numbers. The overall cell leakage rate was 17% and the rodent survival rate was 96%. Teratoma formation was observed in rodents transplanted with cell numbers between 1 × 10(5)-2 × 10(6). We conclude that this modified procedure for transplanting PSCs under the kidney capsule allows for transplantation of a defined number of PSCs with significant reduction of error associated with cell leakage from the transplant site.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Jeong J et al. (OCT 2014)
Experimental and Molecular Pathology 97 2 253--258
Patient-tailored application for Duchene muscular dystrophy on mdx mice based induced mesenchymal stem cells
Mesenchymal stem cells (MSCs) may be used as powerful tools for the repair and regeneration of damaged tissues. However,isolating tissue specific-derived MSCs may cause pain and increased infection rates in patients,and repetitive isolations may be required. To overcome these difficulties,we have examined alternative methods for MSC production. Here,we show that induced pluripotent stem cells (iPSCs) may be differentiated into mesenchymal stem cells (iMSCs) following exposure to SB431542. Purified iMSCs were administered to mdx mice to study skeletal muscle regeneration in a murine model of muscular dystrophy. Purified iMSCs displayed fibroblast-like morphology,formed three-dimensional spheroid structures,and expressed characteristic mesenchymal stem cell surface markers such as CD29,CD33,CD73,CD90,and CD105. Moreover,iMSCs were capable of differentiating into adipogenic,osteogenic,and chondrogenic lineages. Transplanting iMSC cells to tibialis anterior skeletal muscle tissue in mdx mice lowered oxidative damage as evidenced by a reduction in nitrotyrosine levels,and normal dystrophin expression levels were restored. This study demonstrates the therapeutic potential of purified iMSCs in skeletal muscle regeneration in mdx mice,and suggests that iPSCs are a viable alternate source for deriving MSCs as needed. textcopyright 2014 Elsevier Inc.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Andreani M et al. (JAN 2011)
Haematologica 96 1 128--33
Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease.
BACKGROUND: Persistent mixed chimerism represents a state in which recipient and donor cells stably co-exist after hematopoietic stem cell transplantation. However,since in most of the studies reported in literature the engraftment state was observed in the nucleated cells,in this study we determined the donor origin of the mature erythrocytes of patients with persistent mixed chimerism after transplantation for hemoglobinopathies. Results were compared with the engraftment state observed in singly picked out burst-forming unit - erythroid colonies and in the nucleated cells collected from the peripheral blood and from the bone marrow. DESIGN AND METHODS: The donor origin of the erythrocytes was determined analyzing differences on the surface antigens of the erythrocyte suspension after incubation with anti-ABO and/or anti-C,-c,-D,-E and -e monoclonal antibodies by a flow cytometer. Analysis of short tandem repeats was used to determine the donor origin of nucleated cells and burst-forming unit - erythroid colonies singly picked out after 14 days of incubation. RESULTS: The proportions of donor-derived nucleated cells in four transplanted patients affected by hemoglobinopathies were 71%,46%,15% and 25% at day 1364,1385,1314 and 932,respectively. Similar results were obtained for the erythroid precursors,analyzing the donor/recipient origin of the burst-forming unit - erythroid colonies. In contrast,on the same days of observation,the proportions of donor-derived erythrocytes in the four patients with persistent mixed chimerism were 100%,100%,73% and 90%. Conclusions Our results showed that most of the erythrocytes present in four long-term transplanted patients affected by hemoglobinopathies and characterized by the presence of few donor engrafted nucleated cells were of donor origin. The indication that small proportions of donor engrafted cells might be sufficient for clinical control of the disease in patients affected by hemoglobinopathies is relevant,although the biological mechanisms underlying these observations need further investigation.
View Publication
Identification of a novel class of human adherent CD34- stem cells that give rise to SCID-repopulating cells.
Here we describe the in vitro generation of a novel adherent cell fraction derived from highly enriched,mobilized CD133(+) peripheral blood cells after their culture with Flt3/Flk2 ligand and interleukin-6 for 3 to 5 weeks. These cells lack markers of hematopoietic stem cells,endothelial cells,mesenchymal cells,dendritic cells,and stromal fibroblasts. However,all adherent cells expressed the adhesion molecules VE-cadherin,CD54,and CD44. They were also positive for CD164 and CD172a (signal regulatory protein-alpha) and for a stem cell antigen defined by the recently described antibody W7C5. Adherent cells can either spontaneously or upon stimulation with stem cell factor give rise to a transplantable,nonadherent CD133(+)CD34(-) stem cell subset. These cells do not generate in vitro hematopoietic colonies. However,their transplantation into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice induced substantially higher long-term multilineage engraftment compared with that of freshly isolated CD34(+) cells,suggesting that these cells are highly enriched in SCID-repopulating cells. In addition to cells of the myeloid lineage,nonadherent CD34(-) cells were able to give rise to human cells with B-,T-,and natural killer-cell phenotype. Hence,these cells possess a distinct in vivo differentiation potential compared with that of CD34(+) stem cells and may therefore provide an alternative to CD34(+) progenitor cells for transplantation.
View Publication
Watson CL et al. (NOV 2014)
Nature Medicine 20 11 1310--4
An in vivo model of human small intestine using pluripotent stem cells.
Differentiation of human pluripotent stem cells (hPSCs) into organ-specific subtypes offers an exciting avenue for the study of embryonic development and disease processes,for pharmacologic studies and as a potential resource for therapeutic transplant. To date,limited in vivo models exist for human intestine,all of which are dependent upon primary epithelial cultures or digested tissue from surgical biopsies that include mesenchymal cells transplanted on biodegradable scaffolds. Here,we generated human intestinal organoids (HIOs) produced in vitro from human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that can engraft in vivo. These HIOs form mature human intestinal epithelium with intestinal stem cells contributing to the crypt-villus architecture and a laminated human mesenchyme,both supported by mouse vasculature ingrowth. In vivo transplantation resulted in marked expansion and maturation of the epithelium and mesenchyme,as demonstrated by differentiated intestinal cell lineages (enterocytes,goblet cells,Paneth cells,tuft cells and enteroendocrine cells),presence of functional brush-border enzymes (lactase,sucrase-isomaltase and dipeptidyl peptidase 4) and visible subepithelial and smooth muscle layers when compared with HIOs in vitro. Transplanted intestinal tissues demonstrated digestive functions as shown by permeability and peptide uptake studies. Furthermore,transplanted HIO-derived tissue was responsive to systemic signals from the host mouse following ileocecal resection,suggesting a role for circulating factors in the intestinal adaptive response. This model of the human small intestine may pave the way for studies of intestinal physiology,disease and translational studies.
View Publication
Gilpin SE et al. (NOV 2014)
The Annals of thoracic surgery 98 5 1721--------9; discussion 1729
Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix.
BACKGROUND Whole-lung scaffolds can be created by perfusion decellularization of cadaveric donor lungs. The resulting matrices can then be recellularized to regenerate functional organs. This study evaluated the capacity of acellular lung scaffolds to support recellularization with lung progenitors derived from human induced pluripotent stem cells (iPSCs). METHODS Whole rat and human lungs were decellularized by constant-pressure perfusion with 0.1% sodium dodecyl sulfate solution. Resulting lung scaffolds were cryosectioned into slices or left intact. Human iPSCs were differentiated to definitive endoderm,anteriorized to a foregut fate,and then ventralized to a population expressing NK2 homeobox 1 (Nkx2.1). Cells were seeded onto slices and whole lungs,which were maintained under constant perfusion biomimetic culture. Lineage specification was assessed by quantitative polymerase chain reaction and immunofluorescent staining. Regenerated left lungs were transplanted in an orthotopic position. RESULTS Activin-A treatment,followed by transforming growth factor-$\$,induced differentiation of human iPSCs to anterior foregut endoderm as confirmed by forkhead box protein A2 (FOXA2),SRY (Sex Determining Region Y)-Box 17 (SOX17),and SOX2 expression. Cells cultured on decellularized lung slices demonstrated proliferation and lineage commitment after 5 days. Cells expressing Nkx2.1 were identified at 40% to 60% efficiency. Within whole-lung scaffolds and under perfusion culture,cells further upregulated Nkx2.1 expression. After orthotopic transplantation,grafts were perfused and ventilated by host vasculature and airways. CONCLUSIONS Decellularized lung matrix supports the culture and lineage commitment of human iPSC-derived lung progenitor cells. Whole-organ scaffolds and biomimetic culture enable coseeding of iPSC-derived endothelial and epithelial progenitors and enhance early lung fate. Orthotopic transplantation may enable further in vivo graft maturation.
View Publication
产品类型:
产品号#:
07920
09500
85850
85857
产品名:
ACCUTASE™
BIT 9500血清替代物
mTeSR™1
mTeSR™1
文献
Zielske SP et al. (NOV 2003)
The Journal of clinical investigation 112 10 1561--70
In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning.
Infusion of transduced hematopoietic stem cells into nonmyeloablated hosts results in ineffective in vivo levels of transduced cells. To increase the proportion of transduced cells in vivo,selection based on P140K O6-methylguanine-DNA-methyltransferase (MGMT[P140K]) gene transduction and O6-benzylguanine/1,3-bis(2-chloroethyl)-1-nitrosourea (BG/BCNU) treatment has been devised. In this study,we transduced human NOD/SCID repopulating cells (SRCs) with MGMT(P140K) using a lentiviral vector and infused them into BG/BCNU-conditioned NOD/SCID mice before rounds of BG/BCNU treatment as a model for in vivo selection. Engraftment was not observed until the second round of BG/BCNU treatment,at which time human cells emerged to compose up to 20% of the bone marrow. Furthermore,99% of human CFCs derived from NOD/SCID mice were positive for provirus as measured by PCR,compared with 35% before transplant and 11% in untreated irradiation-preconditioned mice,demonstrating selection. Bone marrow showed BG-resistant O6-alkylguanine-DNA-alkyltransferase (AGT) activity,and CFUs were stained intensely for AGT protein,indicating high transgene expression. Real-time PCR estimates of the number of proviral insertions in individual CFUs ranged from 3 to 22. Selection resulted in expansion of one or more SRC clones containing similar numbers of proviral copies per mouse. To our knowledge,these results provide the first evidence of potent in vivo selection of MGMT(P140K) lentivirus-transduced human SRCs following BG/BCNU treatment.
View Publication
Adherent cells generated during long-term culture of human umbilical cord blood CD34+ cells have characteristics of endothelial cells and beneficial effect on cord blood ex vivo expansion.
Hematopoiesis depends on the association of hematopoietic stem cells with stromal cells that constitute the hematopoietic microenvironment. The in vitro development of the endothelial cell from umbilical cord blood (UCB) is not well established and has met very limited success. In this study,UCB CD34(+) cells were cultured for 5 weeks in a stroma-free liquid culture system using thrombopoietin,flt3 ligand,and granulocyte-colony stimulating factor. By week 4-5,we found that firmly adherent fibroblast-like cells were established. These cells showed characteristics of endothelial cells expressing von Willebrand factor,human vascular cell adhesion molecule-1,human intracellular adhesion molecule-1,human CD31,E-selectin,and human macrophage. Furthermore,when comparing an ex vivo system without an established endothelial monolayer to an ex vivo system with an established endothelial monolayer,better expansion of total nucleated cells,CD34(+) cells,and colony-forming units (CFUs)-granulocyte-macrophage and CFUs-granulocyte-erythroid-megakaryocyte-macrophage were found during culture. This phenomenon was in part due to the fact that a significant reduction of apoptotic fractions was found in the CD34(+) cells,which were cultured on the adherent monolayer for up to 5 weeks. To gather quantitative data on the number of endothelial cells derived from a given number of CD34 cells,we performed limiting dilution assay by using Poisson distribution: the number of tested cells (linear scale) producing a 37% negative culture (logarithmic scale) is the number of cells containing one endothelial cell. By this method,one endothelial cell may be found from 314 CD34(+) cells after 5 weeks of culture. These results suggest that the UCB CD34(+) cell fraction contains endothelial cell precursors,establishing the hematopoietic microenvironment and providing the beneficial effects through downregulating apoptosis on UCB expansion protocols. These observations may provide insight for future cellular therapy or graft engineering.
View Publication