Zhou Y et al. ( 2013)
Cell Death and Disease 4 6 e695
MicroRNA-195 targets ADP-ribosylation factor-like protein 2 to induce apoptosis in human embryonic stem cell-derived neural progenitor cells.
Neural progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) have great potential in cell therapy,drug screening and toxicity testing of neural degenerative diseases. However,the molecular regulation of their proliferation and apoptosis,which needs to be revealed before clinical application,is largely unknown. MicroRNA miR-195 is known to be expressed in the brain and is involved in a variety of proapoptosis or antiapoptosis processes in cancer cells. Here,we defined the proapoptotic role of miR-195 in NPCs derived from two independent hESC lines (human embryonic stem cell-derived neural progenitor cells,hESC-NPCs). Overexpression of miR-195 in hESC-NPCs induced extensive apoptotic cell death. Consistently,global transcriptional microarray analyses indicated that miR-195 primarily regulated genes associated with apoptosis in hESC-NPCs. Mechanistically,a small GTP-binding protein ADP-ribosylation factor-like protein 2 (ARL2) was identified as a direct target of miR-195. Silencing ARL2 in hESC-NPCs provoked an apoptotic phenotype resembling that of miR-195 overexpression,revealing for the first time an essential role of ARL2 for the survival of human NPCs. Moreover,forced expression of ALR2 could abolish the cell number reduction caused by miR-195 overexpression. Interestingly,we found that paraquat,a neurotoxin,not only induced apoptosis but also increased miR-195 and reduced ARL2 expression in hESC-NPCs,indicating the possible involvement of miR-195 and ARL2 in neurotoxin-induced NPC apoptosis. Notably,inhibition of miR-195 family members could block neurotoxin-induced NPC apoptosis. Collectively,miR-195 regulates cell apoptosis in a context-dependent manner through directly targeting ARL2. The finding of the critical role of ARL2 for the survival of human NPCs and association of miR-195 and ARL2 with neurotoxin-induced apoptosis have important implications for understanding molecular mechanisms that control NPC survival and would facilitate our manipulation of the neurological pathogenesis.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
van Wilgenburg B et al. (AUG 2013)
PLoS ONE 8 8 e71098
Efficient, Long Term Production of Monocyte-Derived Macrophages from Human Pluripotent Stem Cells under Partly-Defined and Fully-Defined Conditions
Human macrophages are specialised hosts for HIV-1,dengue virus,Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens,because available myeloid cell lines are,by definition,not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined,feeder- and serum-free culture conditions and produces very consistent,pure,high yields across both human Embryonic Stem Cell (hESC) and multiple human induced Pluripotent Stem Cell (hiPSC) lines over time periods of up to one year. Cumulatively,up to ∼3×10(7) monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14(+),CD16(low),CD163(+)). Differentiation with M-CSF produces macrophages that are highly phagocytic,HIV-1-infectable,and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate,as they recognise foreign nucleic acids; the lentivector system described here overcomes this,as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells,surmounting issues of transgene silencing. Overall,the method we describe here is an efficient,effective,scalable system for the reproducible production and genetic modification of human macrophages,facilitating the interrogation of human macrophage biology.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
27845
27945
27840
27865
27940
27965
产品名:
mTeSR™1
mTeSR™1
Akdemir KC et al. (JAN 2014)
Nucleic Acids Research 42 1 205--223
Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells
How tumor suppressor p53 selectively responds to specific signals,especially in normal cells,is poorly understood. We performed genome-wide profiling of p53 chromatin interactions and target gene expression in human embryonic stem cells (hESCs) in response to early differentiation,induced by retinoic acid,versus DNA damage,caused by adriamycin. Most p53-binding sites are unique to each state and define stimulus-specific p53 responses in hESCs. Differentiation-activated p53 targets include many developmental transcription factors and,in pluripotent hESCs,are bound by OCT4 and NANOG at chromatin enriched in both H3K27me3 and H3K4me3. Activation of these genes occurs with recruitment of p53 and H3K27me3-specific demethylases,UTX and JMJD3,to chromatin. In contrast,genes associated with cell migration and motility are bound by p53 specifically after DNA damage. Surveillance functions of p53 in cell death and cell cycle regulation are conserved in both DNA damage and differentiation. Comparative genomic analysis of p53-targets in mouse and human ESCs supports an inter-species divergence in p53 regulatory functions during evolution. Our findings expand the registry of p53-regulated genes to define p53-regulated opposition to pluripotency during early differentiation,a process highly distinct from stress-induced p53 response in hESCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Gage BK et al. (DEC 2013)
PLoS ONE 8 12 e82076
Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells
Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers,and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells,to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells,we examined the effect of varying initial cell seeding density from 1.3 x 104 cells/cm2 to 5.3 x 104 cells/cm2 followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1,PTF1a,NGN3,ARX,and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin,glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression,followed by pancreatic endocrine specification marker expression (BRN4,PAX4,ARX,NEUROD1,NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin,glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment,which precedes pancreatic endocrine cell formation. This work highlights the need to examine standard culture variables such as seeding density when optimizing hESC differentiation protocols.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
85850
85857
85870
85875
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
Sokolov M and Neumann R ( 2014)
International Journal of Molecular Sciences 15 1 588--604
Effects of low doses of ionizing radiation exposures on stress-responsive gene expression in human embryonic stem cells
There is a great deal of uncertainty on how low (≤ 0.1 Gy) doses of ionizing radiation (IR) affect human cells,partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests' radiation,natural background radiation,and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types,we established a novel,human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and,as a reference,relatively high dose of 1 Gy of IR. Here,we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes,including CDKN1A,GADD45A,etc. at 2 and 16 h post-IR,representing early" and "late" radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures."
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07913
85850
85857
85870
85875
产品名:
Dispase(5 U/mL)
mTeSR™1
mTeSR™1
Park C-Y et al. (JUN 2014)
Proceedings of the National Academy of Sciences of the United States of America 111 25 9253--8
Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs.
Hemophilia A,one of the most common genetic bleeding disorders,is caused by various mutations in the blood coagulation factor VIII (F8) gene. Among the genotypes that result in hemophilia A,two different types of chromosomal inversions that involve a portion of the F8 gene are most frequent,accounting for almost half of all severe hemophilia A cases. In this study,we used a transcription activator-like effector nuclease (TALEN) pair to invert a 140-kbp chromosomal segment that spans the portion of the F8 gene in human induced pluripotent stem cells (iPSCs) to create a hemophilia A model cell line. In addition,we reverted the inverted segment back to its normal orientation in the hemophilia model iPSCs using the same TALEN pair. Importantly,we detected the F8 mRNA in cells derived from the reverted iPSCs lines,but not in those derived from the clones with the inverted segment. Thus,we showed that TALENs can be used both for creating disease models associated with chromosomal rearrangements in iPSCs and for correcting genetic defects caused by chromosomal inversions. This strategy provides an iPSC-based novel therapeutic option for the treatment of hemophilia A and other genetic diseases caused by chromosomal inversions.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Garitaonandia I et al. ( 2015)
PloS one 10 2 e0118307
Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions.
The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs) make them a promising source of material for cell transplantation therapy,drug development,and studies of cellular differentiation and development. However,the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures,a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging,and feeder-free vs. mouse embryonic fibroblast feeder substrate,on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages,we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability,higher rates of cell proliferation,and persistence of OCT4/POU5F1-positive cells in teratomas,with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers,we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53,which was associated with decreased mRNA expression of TP53,as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures,we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies.
View Publication
产品类型:
产品号#:
77003
77004
产品名:
CellAdhere™ Laminin-521
Kerscher P et al. (MAR 2016)
Biomaterials 83 383--395
Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues
Human engineered heart tissues have potential to revolutionize cardiac development research,drug-testing,and treatment of heart disease; however,implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment,we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward,ontomimetic approach,imitating the process of development,requires only a single cell-handling step,provides reproducible results for a range of tested geometries and size scales,and overcomes inherent limitations in cell maintenance and maturation,while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. We demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation,mimicking heart development,and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Tidball AM et al. ( 2016)
PloS one 11 3 e0150372
Genomic Instability Associated with p53 Knockdown in the Generation of Huntington's Disease Human Induced Pluripotent Stem Cells.
Alterations in DNA damage response and repair have been observed in Huntington's disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis,while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX,indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus,increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Maldonado M et al. (MAY 2016)
Advanced Healthcare Materials 5 12 1408--1412
Enhanced Lineage-Specific Differentiation Efficiency of Human Induced Pluripotent Stem Cells by Engineering Colony Dimensionality Using Electrospun Scaffolds
Electrospun scaffolds with varied stiffness promote distinct colony morphology of human induced pluripotent stem cells,which affects their subsequent differentiation. On soft scaffolds,induced pluripotent stem cells develop 3D colonies due to the pliability of the electrospun fibrous networks,leading to greater differentiation tendency to ectodermal lineage.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ramachandra CJA et al. (JUN 2016)
Stem Cells
ErbB Receptor Tyrosine Kinase: A Molecular Switch between Cardiac and Neuroectoderm Specification in Human Pluripotent Stem Cells
Mechanisms determining intrinsic differentiation bias inherent to human pluripotent stem cells (hPSCs) toward cardiogenic fate remain elusive. We evaluated the interplay between ErbB4 and EGFR in determining cardiac differentiation in vitro as these receptor tyrosine kinases (RTKs) are key to heart and brain development in vivo. Our results demonstrate that during cardiac differentiation,cell fate biases exist in hPSCs due to cardiac/neuroectoderm divergence post cardiac mesoderm stage. Stage-specific up-regulation of EGFR in concert with persistent Wnt3a signaling post cardiac mesoderm favors commitment towards neural progenitor cells (NPCs). Inhibition of EGFR abrogates these effects with enhanced (textgreater2-fold) cardiac differentiation efficiencies by increasing proliferation of Nkx2-5 expressing cardiac progenitors while reducing proliferation of Sox2 expressing NPCs. Forced overexpression of ErbB4 rescued cardiac commitment by augmenting Wnt11 signaling. Convergence between EGFR/ErbB4 and canonical/non-canonical Wnt signaling determines cardiogenic fate in hPSCs. This article is protected by copyright. All rights reserved.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Khan M et al. (JUL 2013)
Biomaterials 34 21 5336--5343
Delivery of reprogramming factors into fibroblasts for generation of non-genetic induced pluripotent stem cells using a cationic bolaamphiphile as a non-viral vector
Protein delivery allows a clinical effect to be directly realized without genetic modification of the host cells. We have developed a cationic bolaamphiphile as a non-viral vector for protein delivery application. The relatively low toxicity and efficient protein delivery by the cationic bolaamphiphile prompted us to test the system for the generation of induced pluripotent stem cells (iPSCs) as an alternative to the conventional vector-based genetic approach. Studies on the kinetics and cytotoxicity of the protein delivery system led us to use an optimized cationic bolaamphiphile-protein complex ratio of 7:1 (wt/wt) and a 3 h period of incubation with human fibroblasts,to ensure complete and non-toxic protein delivery of the reprogramming proteins. The reprogrammed cells were shown to exhibit the characteristics of embryonic stem cells,including expression of pluripotent markers,teratoma formation in SCID mice,and ability to be differentiated into a specific lineage,as exemplified by neuronal differentiation.
View Publication