Lu HF et al. (MAR 2014)
Biomaterials 35 9 2816--2826
A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells
A defined xeno-free system for patient-specific iPSC derivation and differentiation is required for translation to clinical applications. However,standard somatic cell reprogramming protocols rely on using MEFs and xenogeneic medium,imposing a significant obstacle to clinical translation. Here,we describe a well-defined culture system based on xeno-free media and LN521 substrate which supported i) efficient reprogramming of normal or diseased skin fibroblasts from human of different ages into hiPSCs with a 15-30 fold increase in efficiency over conventional viral vector-based method; ii) long-term self-renewal of hiPSCs; and iii) direct hiPSC lineage-specific differentiation. Using an excisable polycistronic vector and optimized culture conditions,we achieved up to 0.15%-0.3% reprogramming efficiencies. Subsequently,transgene-free hiPSCs were obtained by Cre-mediated excision of the reprogramming factors. The derived iPSCs maintained long-term self-renewal,normal karyotype and pluripotency,as demonstrated by the expression of stem cell markers and ability to form derivatives of three germ layers both in vitro and in vivo. Importantly,we demonstrated that Parkinson's patient transgene-free iPSCs derived using the same system could be directed towards differentiation into dopaminergic neurons under xeno-free culture conditions. Our approach provides a safe and robust platform for the generation of patient-specific iPSCs and derivatives for clinical and translational applications. textcopyright 2013 Elsevier Ltd.
View Publication
Vanneaux V et al. (JAN 2010)
Cell transplantation 19 9 1143--55
In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application?
Umbilical cord blood (CB) represents a main source of circulating endothelial progenitor cells (cEPCs). In view of their clinical use,in either the autologous or allogeneic setting,cEPCs should likely be expanded from CB kept frozen in CB banks. In this study,we compared the expansion,functional features,senescence pattern over culture,and in vivo angiogenic potential of cEPCs isolated from fresh or cryopreserved CB (cryoCB). cEPCs could be isolated in only 59% of cryoCB compared to 94% for fresh CB,while CB units were matched in terms of initial volume,nucleated and CD34(+) cell number. Moreover,the number of endothelial colony-forming cells was significantly decreased when using cryoCB. Once cEPCs culture was established,the proliferation,migration,tube formation,and acetylated-LDL uptake potentials were similar in both groups. In addition,cEPCs derived from cryoCB displayed the same senescence status and telomeres length as that of cEPCs derived from fresh CB. Karyotypic aberrations were found in cells obtained from both fresh and cryoCB. In vivo,in a hind limb ischemia murine model,cEPCs from fresh and cryoCB were equally efficient to induce neovascularization. Thus,cEPCs isolated from cryoCB exhibited similar properties to those of fresh CB in vitro and in vivo. However,the low frequency of cEPCs colony formation after cryopreservation shed light on the need for specific freezing conditions adapted to cEPCs in view of their future clinical use.
View Publication
产品类型:
产品号#:
15026
15066
产品名:
RosetteSep™ 人造血祖细胞富集抗体混合物
RosetteSep™人造血祖细胞富集抗体混合物
Zhang J et al. ( 2016)
International Journal of Biological Sciences 12 6 639--652
Dimethyloxaloylglycine promotes the angiogenic activity of mesenchymal stem cells derived from iPSCs via activation of the PI3K/Akt pathway for bone regeneration
The vascularization of tissue-engineered bone is a prerequisite step for the successful repair of bone defects. Hypoxia inducible factor-1$$ (HIF-1$$) plays an essential role in angiogenesis-osteogenesis coupling during bone regeneration and can activate the expression of angiogenic factors in mesenchymal stem cells (MSCs). Dimethyloxaloylglycine (DMOG) is an angiogenic small molecule that can inhibit prolyl hydroxylase (PHD) enzymes and thus regulate the stability of HIF-1$$ in cells at normal oxygen tension. Human induced pluripotent stem cell-derived MSCs (hiPSC-MSCs) are promising alternatives for stem cell therapy. In this study,we evaluated the effect of DMOG on promoting hiPSC-MSCs angiogenesis in tissue-engineered bone and simultaneously explored the underlying mechanisms in vitro. The effectiveness of DMOG in improving the expression of HIF-1$$ and its downstream angiogenic genes in hiPSC-MSCs demonstrated that DMOG significantly enhanced the gene and protein expression profiles of angiogenic-related factors in hiPSC-MSCs by sustaining the expression of HIF-1$$. Further analysis showed that DMOG-stimulated hiPSC-MSCs angiogenesis was associated with the phosphorylation of protein kinase B (Akt) and with an increase in VEGF production. The effects could be blocked by the addition of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. In a critical-sized calvarial defect model in rats,DMOG-treated hiPSC-MSCs showed markedly improved angiogenic capacity in the tissue-engineered bone,leading to bone regeneration. Collectively,the results indicate that DMOG,via activation of the PI3K/Akt pathway,promotes the angiogenesis of hiPSC-MSCs in tissue-engineered bone for bone defect repair and that DMOG-treated hiPSC-MSCs can be exploited as a potential therapeutic tool in bone regeneration.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Tripp A et al. (NOV 2003)
Journal of virology 77 22 12152--64
Human T-cell leukemia virus type 1 tax oncoprotein suppression of multilineage hematopoiesis of CD34+ cells in vitro.
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are highly related viruses that differ in disease manifestation. HTLV-1 is the etiologic agent of adult T-cell leukemia and lymphoma,an aggressive clonal malignancy of human CD4-bearing T lymphocytes. Infection with HTLV-2 has not been conclusively linked to lymphoproliferative disorders. We previously showed that human hematopoietic progenitor (CD34(+)) cells can be infected by HTLV-1 and that proviral sequences were maintained after differentiation of infected CD34(+) cells in vitro and in vivo. To investigate the role of the Tax oncoprotein of HTLV on hematopoiesis,bicistronic lentiviral vectors were constructed encoding the HTLV-1 or HTLV-2 tax genes (Tax1 and Tax2,respectively) and the green fluorescent protein marker gene. Human hematopoietic progenitor (CD34(+)) cells were infected with lentivirus vectors,and transduced cells were cultured in a semisolid medium permissive for the development of erythroid,myeloid,and primitive progenitor colonies. Tax1-transduced CD34(+) cells displayed a two- to fivefold reduction in the total number of hematopoietic clonogenic colonies that arose in vitro,in contrast to Tax2-transduced cells,which showed no perturbation of hematopoiesis. The ratio of colony types that developed from Tax1-transduced CD34(+) cells remained unaffected,suggesting that Tax1 inhibited the maturation of relatively early,uncommitted hematopoietic stem cells. Since previous reports have linked Tax1 expression with initiation of apoptosis,lentiviral vector-mediated transduction of Tax1 or Tax2 was investigated in CEM and Jurkat T-cell lines. Ectopic expression of either Tax1 or Tax2 failed to induce apoptosis in T-cell lines. These data demonstrate that Tax1 expression perturbs development and maturation of pluripotent hematopoietic progenitor cells,an activity that is not displayed by Tax2,and that the suppression of hematopoiesis is not attributable to induction of apoptosis. Since hematopoietic progenitor cells may serve as a latently infected reservoir for HTLV infection in vivo,the different abilities of HTLV-1 and -2 Tax to suppress hematopoiesis may play a role in the respective clinical outcomes after infection with HTLV-1 or -2.
View Publication
产品类型:
产品号#:
02690
产品名:
StemSpan™CC100
Bañ et al. (SEP 2008)
DNA repair 7 9 1471--1483
Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.
Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse,but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed textless10% of the level of mouse embryo fibroblasts (MEFs) although Ku70/80 protein levels were higher than MEFs. However,the low level of DNA-PK(cs) found in wild-type cells appeared sufficient to allow rejoining of dsb after doses textless20Gy even in G1 phase cells. Inhibition of DNA-PK(cs) with wortmannin and NU7026 still sensitized mES cells to radiation confirming the importance of the residual DNA-PK(cs) at low doses. In contrast to wild-type cells,mES cells lacking H2AX,a histone protein involved in the DNA damage response,were radiosensitive but they rejoined double-strand breaks more rapidly. Consistent with more rapid dsb rejoining,H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs),an increase in dsb rejoining rate,and a decrease in Ku70/80. Unlike mouse ES,human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells,they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM,and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
00321
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Sharma S et al. (MAR 2010)
Cytometry. Part B,Clinical cytometry 78 2 123--9
Electronic volume, aldehyde dehydrogenase, and stem cell marker expression in cells from human peripheral blood apheresis samples.
BACKGROUND: Over-expression of aldehyde dehydrogenase and other stem cell markers is characteristic of cells with tumorigenic potential in NOD/SCID mice. Most of these studies have focused on metastatic cells in bone marrow and on solid tumors. There are no studies on correlation of marker expression with ALDH1 expression in cells from human peripheral blood apheresis (HPC-A) samples. METHODS: HPC-A samples from 44 patients were incubated with Aldefluor with or without the presence of aldehyde dehydrogenase inhibitor DEAB. Cells with high aldehyde dehydrogenase expression (ALDH1(bright)) were analyzed for stem/progenitor markers CD34,CD90,CD117,and CD133. Electronic volume measured by Coulter principal in a Quanta flow analyzer was correlated with ALDH1 and marker expression. RESULTS: In ALDH1(bright)/SSC(low) cells,0.13% of the cells had CD34(+) expression and three distinct populations were seen. Expression of CD90 was dim and the frequency of ALDH1(bright)/SSC(low)/CD90(dim) cells amongst the nonlineage depleted samples was 0.04%. CD117(dim-bright) expression was seen in 0.17% of the samples. Three distinct populations of cells with CD133 expression were seen in ALDH1(bright)/SSC(low) nonlineage depleted cells with a frequency of 0.28%. The ALDH1(bright)/CD90(dim) cells had the smallest mean electronic volume of 264.9 microm(3) when compared with cells with CD34(bright) expression (270.2 microm(3)) and ALDH1(dim)/CD90(dim) cells (223 microm(3)). CONCLUSIONS: ALDH1(bright)/SSC(low) cells show heterogeneity in expression of the four stem cell markers studied. The CD90 cells in both the ALDH1(bright) and ALDH1(dim) populations had the smallest mean electronic volume when compared with similar cells with CD117 expression.
View Publication
Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells.
About half of the human genome consists of highly repetitive elements,most of which are considered dispensable for human life. Here,we report that repetitive elements originating from endogenous retroviruses (ERVs) are systematically transcribed during human early embryogenesis in a stage-specific manner. Our analysis highlights that the long terminal repeats (LTRs) of ERVs provide the template for stage-specific transcription initiation,thereby generating hundreds of co-expressed,ERV-derived RNAs. Conversion of human embryonic stem cells (hESCs) to an epiblast-like state activates blastocyst-specific ERV elements,indicating that their activity dynamically reacts to changes in regulatory networks. In addition to initiating stage-specific transcription,many ERV families contain preserved splice sites that join the ERV segment with non-ERV exons in their genomic vicinity. In summary,we find that ERV expression is a hallmark of cellular identity and cell potency that characterizes the cell populations in early human embryos.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ankam S et al. (APR 2015)
Biomaterials 47 20--28
Actomyosin contractility plays a role in MAP2 expression during nanotopography-directed neuronal differentiation of human embryonic stem cells
Pluripotent human embryonic stem cells (hESCs) have the capability of differentiating into different lineages based on specific environmental cues. We had previously shown that hESCs can be primed to differentiate into either neurons or glial cells,depending on the arrangement,geometry and size of their substrate topography. In particular,anisotropically patterned substrates like gratings were found to favour the differentiation of hESCs into neurons rather than glial cells. In this study,our aim is to elucidate the underlying mechanisms of topography-induced differentiation of hESCs towards neuronal lineages. We show that high actomyosin contractility induced by a nano-grating topography is crucial for neuronal maturation. Treatment of cells with the myosin II inhibitor (blebbistatin) and myosin light chain kinase inhibitor (ML-7) greatly reduces the expression level of microtubule-associated protein 2 (MAP2). On the other hand,our qPCR array results showed that PAX5,BRN3A and NEUROD1 were highly expressed in hESCs grown on nano-grating substrates as compared to unpatterned substrates,suggesting the possible involvement of these genes in topography-mediated neuronal differentiation of hESCs. Interestingly,YAP was localized to the cytoplasm of differentiating hESCs. Taken together,our study has provided new insights in understanding the mechanotransduction of topographical cues during neuronal differentiation of hESCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Kaur R et al. (OCT 2015)
Disease models & mechanisms 8 10 1295--1309
OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells.
Medulloblastoma (MB) is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations,gene expression profiles and response to treatment: WNT,Sonic Hedgehog (SHH),Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example,expression of the transcription factor Orthodenticle homeobox2 (OTX2) is frequently dysregulated in multiple MB variants; however,its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs),but not their normal counterparts (hENs),resemble Groups 3 and 4 MB in vitro and in vivo. Here,we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs,respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth,self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes,such as SOX2,and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast,OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang L et al. (MAR 2016)
Scientific reports 6 February 22484
TGF$$ signaling regulates the choice between pluripotent and neural fates during reprogramming of human urine derived cells.
Human urine cells (HUCs) can be reprogrammed into neural progenitor cells (NPCs) or induced pluripotent stem cells (iPSCs) with defined factors and a small molecule cocktail,but the underlying fate choice remains unresolved. Here,through sequential removal of individual compound from small molecule cocktail,we showed that A8301,a TGF$$ signaling inhibitor,is sufficient to switch the cell fate from iPSCs into NPCs in OSKM-mediated HUCs reprogramming. However,TGF$$ exposure at early stage inhibits HUCs reprogramming by promoting EMT. Base on these data,we developed an optimized approach for generation of NPCs or iPSCs from HUCs with significantly improved efficiency by regulating TGF$$ activity at different reprogramming stages. This approach provides a simplified and improved way for HUCs reprogramming,thus would be valuable for banking human iPSCs or NPCs from people with different genetic background.
View Publication
Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions.
Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however,although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes,most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here,the authors report a 3D cellular microenvironment plate (3D-CEP),which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG),which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally,global gene expression analyses are used to elucidate small variations among different test environments. Interestingly,the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine.
View Publication