Pipino C et al. (OCT 2014)
Cellular reprogramming 16 5 331--344
Trisomy 21 mid-trimester amniotic fluid induced pluripotent stem cells maintain genetic signatures during reprogramming: implications for disease modeling and cryobanking.
Trisomy 21 is the most common chromosomal abnormality and is associated primarily with cardiovascular,hematological,and neurological complications. A robust patient-derived cellular model is necessary to investigate the pathophysiology of the syndrome because current animal models are limited and access to tissues from affected individuals is ethically challenging. We aimed to derive induced pluripotent stem cells (iPSCs) from trisomy 21 human mid-trimester amniotic fluid stem cells (AFSCs) and describe their hematopoietic and neurological characteristics. Human AFSCs collected from women undergoing prenatal diagnosis were selected for c-KIT(+) and transduced with a Cre-lox-inducible polycistronic lentiviral vector encoding SOX2,OCT4,KLF-4,and c-MYC (50,000 cells at a multiplicity of infection (MOI) 1-5 for 72 h). The embryonic stem cell (ESC)-like properties of the AFSC-derived iPSCs were established in vitro by embryoid body formation and in vivo by teratoma formation in RAG2(-/-),$\$-chain(-/-),C2(-/-) immunodeficient mice. Reprogrammed cells retained their cytogenetic signatures and differentiated into specialized hematopoietic and neural precursors detected by morphological assessment,immunostaining,and RT-PCR. Additionally,the iPSCs expressed all pluripotency markers upon multiple rounds of freeze-thawing. These findings are important in establishing a patient-specific cellular platform of trisomy 21 to study the pathophysiology of the aneuploidy and for future drug discovery.
View Publication
产品类型:
产品号#:
04434
04444
05850
05857
05870
05875
07909
85850
85857
85870
85875
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
IV型胶原酶(1mg /mL)
mTeSR™1
mTeSR™1
Taubert I et al. (APR 2011)
Cytotherapy 13 4 459--66
Characterization of hematopoietic stem cell subsets from patients with multiple myeloma after mobilization with plerixafor.
BACKGROUND AIMS: Previous studies have demonstrated that the combination of granulocyte-colony-stimulating factor (G-CSF) + plerixafor is more efficient in mobilizing CD34(+) hematopoietic stem cells (HSC) into the peripheral blood than G-CSF alone. In this study we analyzed the impact of adding plerixafor to G-CSF upon the mobilization of different HSC subsets. METHODS: We characterized the immunophenotype of HSC subsets isolated from the peripheral blood of eight patients with multiple myeloma (MM) before and after treatment with plerixafor. All patients were supposed to collect stem cells prior to high-dose chemotherapy and consecutive autologous stem cell transplantation,and therefore received front-line mobilization with 4 days of G-CSF followed by a single dose of plerixafor. Samples of peripheral blood were analyzed comparatively by flow cytometry directly before and 12 h after administration of plerixafor. RESULTS: The number of aldehyde dehydrogenase (ALDH)(bright) and CD34(+) cells was significantly higher after plerixafor treatment (1.2-5.0 and 1.5-6.0 times; both P textless 0.01) and an enrichment of the very primitive CD34(+) CD38(-) and ALDH(bright) CD34(+) CD38(-) HSC subsets was detectable. Additionally,two distinct ALDH(+) subsets could be clearly distinguished. The small ALDH(high) subset showed a higher number of CD34(+) CD38(-) cells in contrast to the total ALDH(bright) subpopulation and probably represented a very primitive subpopulation of HSC. CONCLUSIONS: A combined staining of ALDH,CD34 and CD38 might represent a powerful tool for the identification of a very rare and primitive hematopoietic stem cell subset. The addition of plerixafor mobilized not only more CD34(+) cells but was also able to increase the proportion of more primitive stem cell subsets.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Jiang S et al. (JAN 2011)
Blood 117 3 827--38
Cannabinoid receptor 2 and its agonists mediate hematopoiesis and hematopoietic stem and progenitor cell mobilization.
Endocannabinoids are arachidonic acid derivatives and part of a novel bioactive lipid signaling system,along with their G-coupled cannabinoid receptors (CB�? and CB₂) and the enzymes involved in their biosynthesis and degradation. However,their roles in hematopoiesis and hematopoietic stem and progenitor cell (HSPC) functions are not well characterized. Here,we show that bone marrow stromal cells express endocannabinoids (anandamide and 2-arachidonylglycerol),whereas CB₂ receptors are expressed in human and murine HSPCs. On ligand stimulation with CB₂ agonists,CB₂ receptors induced chemotaxis,migration,and enhanced colony formation of bone marrow cells,which were mediated via ERK,PI3-kinase,and Gαi-Rac1 pathways. In vivo,the CB₂ agonist AM1241 induced mobilization of murine HSPCs with short- and long-term repopulating abilities. In addition,granulocyte colony-stimulating factor -induced mobilization of HSPCs was significantly decreased by specific CB₂ antagonists and was impaired in Cnr2(-/-) cannabinoid type 2 receptor knockout mice. Taken together,these results demonstrate that the endocannabinoid system is involved in hematopoiesis and that CB₂/CB₂ agonist axis mediates repopulation of hematopoiesis and mobilization of HSPCs. Thus,CB₂ agonists may be therapeutically applied in clinical conditions,such as bone marrow transplantation.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Nakamura H et al. (OCT 2013)
Herpesviridae 4 1 2
Human cytomegalovirus induces apoptosis in neural stem/progenitor cells derived from induced pluripotent stem cells by generating mitochondrial dysfunction and endoplasmic reticulum stress
BACKGROUND Congenital human cytomegalovirus (HCMV) infection,a leading cause of birth defects,is most often manifested as neurological disorders. The pathogenesis of HCMV-induced neurological disorders is,however,largely unresolved,primarily because of limited availability of model systems to analyze the effects of HCMV infection on neural cells. METHODS An induced pluripotent stem cell (iPSC) line was established from the human fibroblast line MRC5 by introducing the Yamanaka's four factors and then induced to differentiate into neural stem/progenitor cells (NSPCs) by dual inhibition of the SMAD signaling pathway using Noggin and SB-431542. RESULTS iPSC-derived NSPCs (NSPC/iPSCs) were susceptible to HCMV infection and allowed the expression of both early and late viral gene products. HCMV-infected NSPC/iPSCs underwent apoptosis with the activation of caspase-3 and -9 as well as positive staining by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Cytochrome c release from mitochondria to cytosol was observed in these cells,indicating the involvement of mitochondrial dysfunction in their apoptosis. In addition,phosphorylation of proteins involved in the unfolded protein response (UPR),such as PKR-like eukaryotic initiation factor 2a kinase (PERK),c-Jun NH2-terminal kinase (JNK),inositol-requiring enzyme 1 (IRE1),and the alpha subunit of eukaryotic initiation factor 2 (eIF2$$) was observed in HCMV-infected NSPC/iPSCs. These results,coupled with the finding of increased expression of mRNA encoding the C/EBP-homologous protein (CHOP) and the detection of a spliced form of X-box binding protein 1 (XBP1) mRNA,suggest that endoplasmic reticulum (ER) stress is also involved in HCMV-induced apoptosis of these cells. CONCLUSIONS iPSC-derived NSPCs are thought to be a useful model to study HCMV neuropathogenesis and to analyze the mechanisms of HCMV-induced apoptosis in neural cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Dumont N et al. (APR 2009)
Immunology 126 4 588--95
Increased secretion of hyperimmune antibodies following lipopolysaccharide stimulation of CD40-activated human B cells in vitro.
Human B cells can be cultured ex vivo for a few weeks,following stimulation of the CD40 cell surface molecule in the presence of recombinant cytokines such as interleukin-4 (IL-4). However,attempts to produce polyclonal antigen-specific human antibodies by in vitro culture of human B cells obtained from immunized donors have not been successful. It has been shown in mice that lipopolysaccharide (LPS) is a potent mitogen for B cells and plays an important role in the generation of antigen-specific antibody responses. Although it has long been believed that LPS has no direct effect on human B cells,recent data indicating that IL-4-activated human B cells are induced to express Toll-like receptor-4,the main LPS receptor,prompted us to study the effects of LPS on the proliferation and antibody secretion of human B cells. Our results showed that LPS caused a reduction in the expansion of CD40-activated human B cells,accompanied by an increase in antigen-specific antibody secretion. This result suggested that some,but not all,B cells were able to differentiate into antibody-secreting cells in response to LPS. This increased differentiation could be explained by the observation that LPS-stimulated human B cells were induced to secrete higher amounts of IL-6,a pleiotropic cytokine well-known for its B-cell differentiation activity. In vivo,the effect of LPS on cytokine secretion by B cells may not only enhance B-cell differentiation but also help to sustain a local ongoing immune response to invading Gram-negative bacteria,until all pathogens have been cleared from the organism.
View Publication
产品类型:
产品号#:
14054
18357
18357RF
产品名:
Lu HF et al. (DEC 2012)
Biomaterials 33 36 9179--87
Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds.
Developing an efficient culture system for controlled human pluripotent stem cell (hPSC) differentiation into selected lineages is a major challenge in realizing stem cell-based clinical applications. Here,we report the use of chitin-alginate 3D microfibrous scaffolds,previously developed for hPSC propagation,to support efficient neuronal differentiation and maturation under chemically defined culture conditions. When treated with neural induction medium containing Noggin/retinoic acid,the encapsulated cells expressed much higher levels of neural progenitor markers SOX1 and PAX6 than those in other treatment conditions. Immunocytochemisty analysis confirmed that the majority of the differentiated cells were nestin-positive cells. Subsequently transferring the scaffolds to neuronal differentiation medium efficiently directed these encapsulated neural progenitors into mature neurons,as detected by RT-PCR and positive immunostaining for neuron markers βIII tubulin and MAP2. Furthermore,flow cytometry confirmed that textgreater90% βIII tubulin-positive neurons was achieved for three independent iPSC and hESC lines,a differentiation efficiency much higher than previously reported. Implantation of these terminally differentiated neurons into SCID mice yielded successful neural grafts comprising MAP2 positive neurons,without tumorigenesis,suggesting a potential safe cell source for regenerative medicine. These results bring us one step closer toward realizing large-scale production of stem cell derivatives for clinical and translational applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Cipriano AF et al. (APR 2013)
Journal of Materials Science: Materials in Medicine 24 4 989--1003
In vitro degradation of four magnesium-zinc-strontium alloys and their cytocompatibility with human embryonic stem cells
Magnesium alloys have attracted great interest for medical applications due to their unique biodegradable capability and desirable mechanical properties. When designed for medical applications,these alloys must have suitable degradation properties,i.e.,their degradation rate should not exceed the rate at which the degradation products can be excreted from the body. Cellular responses and tissue integration around the Mg-based implants are critical for clinical success. Four magnesium–zinc–strontium (ZSr41) alloys were developed in this study. The degradation properties of the ZSr41 alloys and their cytocompatibility were studied using an in vitro human embryonic stem cell (hESC) model due to the greater sensitivity of hESCs to known toxicants which allows to potentially detect toxicological effects of new biomaterials at an early stage. Four distinct ZSr41 alloys with 4 wt% zinc and a series of strontium compositions (0.15,0.5,1,and 1.5 wt% Sr) were produced through metallurgical processing. Their degradation was characterized by measuring total mass loss of samples and pH change in the cell culture media. The concentration of Mg ions released from ZSr41 alloy into the cell culture media was analyzed using inductively coupled plasma atomic emission spectroscopy. Surface microstructure and composition before and after culturing with hESCs were characterized using field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Pure Mg was used as a control during cell culture studies. Results indicated that the Mg–Zn–Sr alloy with 0.15 wt% Sr provided slower degradation and improved cytocompatibility as compared with pure Mg control.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
van der Meer AD et al. (SEP 2013)
Lab on a Chip 13 18 3562--3568
Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device
Organs-on-chips are microengineered in vitro tissue structures that can be used as platforms for physiological and pathological research. They provide tissue-like microenvironments in which different cell types can be co-cultured in a controlled manner to create synthetic organ mimics. Blood vessels are an integral part of all tissues in the human body. Development of vascular structures is therefore an important research topic for advancing the field of organs-on-chips since generated tissues will require a blood or nutrient supply. Here,we have engineered three-dimensional constructs of vascular tissue inside microchannels by injecting a mixture of human umbilical vein endothelial cells,human embryonic stem cell-derived pericytes (the precursors of vascular smooth muscle cells) and rat tail collagen I into a polydimethylsiloxane microfluidic channel with dimensions 500 μm × 120 μm × 1 cm (w × h × l). Over the course of 12 h,the cells organized themselves into a single long tube resembling a blood vessel that followed the contours of the channel. Detailed examination of tube morphology by confocal microscopy revealed a mature endothelial monolayer with complete PECAM-1 staining at cell–cell contacts and pericytes incorporated inside the tubular structures. We also demonstrated that tube formation was disrupted in the presence of a neutralizing antibody against transforming growth factor-beta (TGF-β). The TGF-β signaling pathway is essential for normal vascular development; deletion of any of its components in mouse development results in defective vasculogenesis and angiogenesis and mutations in humans have been linked to multiple vascular genetic diseases. In the engineered microvessels,inhibition of TGF-β signaling resulted in tubes with smaller diameters and higher tortuosity,highly reminiscent of the abnormal vessels observed in patients with one particular vascular disease known as hereditary hemorrhagic telangiectasia (HHT). In summary,we have developed microengineered three-dimensional vascular structures that can be used as a model to test the effects of drugs and study the interaction between different human vascular cell types. In the future,the model may be integrated into larger tissue constructs to advance the development of organs-on-chips.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Durruthy-Durruthy J et al. (APR 2014)
PLoS ONE 9 4 e94231
Rapid and efficient conversion of integration-free human induced pluripotent stem cells to GMP-grade culture conditions
Data suggest that clinical applications of human induced pluripotent stem cells (hiPSCs) will be realized. Nonetheless,clinical applications will require hiPSCs that are free of exogenous DNA and that can be manufactured through Good Manufacturing Practice (GMP). Optimally,derivation of hiPSCs should be rapid and efficient in order to minimize manipulations,reduce potential for accumulation of mutations and minimize financial costs. Previous studies reported the use of modified synthetic mRNAs to reprogram fibroblasts to a pluripotent state. Here,we provide an optimized,fully chemically defined and feeder-free protocol for the derivation of hiPSCs using synthetic mRNAs. The protocol results in derivation of fully reprogrammed hiPSC lines from adult dermal fibroblasts in less than two weeks. The hiPSC lines were successfully tested for their identity,purity,stability and safety at a GMP facility and cryopreserved. To our knowledge,as a proof of principle,these are the first integration-free iPSCs lines that were reproducibly generated through synthetic mRNA reprogramming that could be putatively used for clinical purposes.
View Publication
产品类型:
产品号#:
05860
05880
05850
05857
05870
05875
07923
07909
85850
85857
85870
85875
27845
27945
27840
27865
27940
27965
产品名:
Dispase (1 U/mL)
IV型胶原酶(1mg /mL)
mTeSR™1
mTeSR™1
Briggs SF et al. (JUN 2015)
Stem Cells 33 6 1771--1781
Single-Cell XIST Expression in Human Preimplantation Embryos and Newly Reprogrammed Female Induced Pluripotent Stem Cells.
The process of X chromosome inactivation (XCI) during reprogramming to produce human induced pluripotent stem cells (iPSCs),as well as during the extensive programming that occurs in human preimplantation development,is not well-understood. Indeed,studies of XCI during reprogramming to iPSCs report cells with two active X chromosomes and/or cells with one inactive X chromosome. Here,we examine expression of the long noncoding RNA,XIST,in single cells of human embryos through the oocyte-to-embryo transition and in new mRNA reprogrammed iPSCs. We show that XIST is first expressed beginning at the 4-cell stage,coincident with the onset of embryonic genome activation in an asynchronous manner. Additionally,we report that mRNA reprogramming produces iPSCs that initially express XIST transcript; however,expression is rapidly lost with culture. Loss of XIST and H3K27me3 enrichment at the inactive X chromosome at late passage results in X chromosome expression changes. Our data may contribute to applications in disease modeling and potential translational applications of female stem cells.
View Publication