Lagarkova MA et al. (MAR 2010)
Cell Cycle 9 5 937--46
Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale
Reprogramming of a limited number of human cell types has been achieved through ectopic expression of four transcription factors to yield induced pluripotent stem (iPS) cells that closely resemble human embryonic stem cells (ESCs). Here,we determined functional and epigenetic properties of iPS cells generated from human umbilical vein endothelial cells (HUVEC) by conventional method of direct reprogramming. Retroviral overexpression of four transcription factors resets HUVEC to the pluripotency. Human endothelial cell-derived iPS (endo-iPS) cells were similar to human ESCs in morphology,gene expression,in vitro and in vivo differentiation capacity. Endo-iPS cells were efficiently differentiated in vitro into endothelial cells. Using genome-wide methylation profiling we show that promoter elements of endothelial specific genes were methylated following reprogramming whereas pluripotency-related gene promoters were hypomethylated similar to levels observed in ESCs. Genome-wide methylation analysis of CpG sites located in the functional regions of over than 14,000 genes indicated that human endo-iPS cells were highly similar to human ES cells,although differences in methylation levels of 46 genes were found. Overall CpG methylation of promoter regions in the pluripotent cells was higher than in somatic. We also show that during reprogramming female human endo-iPS cells exhibited reactivation of the somatically silenced X chromosome. Our findings demonstrate that iPS cells can be generated from human endothelial cells and reprogramming resets epigenetic status of endothelial cells to pluripotency.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Thayanithy V et al. (APR 2014)
Experimental Cell Research 323 1 178--188
Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells
Tunneling nanotubes (TnTs) are long,non-adherent,actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study,we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24-48. h; and this effect was most prominent in media conditions (low-serum,hyperglycemic medium) that support TnT formation (1.3-1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs,in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs,which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation,and also lipid raft formation as a potential biomarker for TnT-forming cells. textcopyright 2014 Elsevier Inc.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhang K et al. (JAN 2014)
Protein and Cell 5 1 48--58
Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors
The generation of functional retinal pigment epithelium (RPE) is of great therapeutic interest to the field of regenerative medicine and may provide possible cures for retinal degenerative diseases,including age-related macular degeneration (AMD). Although RPE cells can be produced from either embryonic stem cells or induced pluripotent stem cells,direct cell reprogramming driven by lineagedetermining transcription factors provides an immediate route to their generation. By monitoring a human RPE specific Best1::GFP reporter,we report the conversion of human fibroblasts into RPE lineage using defined sets of transcription factors. We found that Best1::GFP positive cells formed colonies and exhibited morphological and molecular features of early stage RPE cells. Moreover,they were able to obtain pigmentation upon activation of Retinoic acid (RA) and Sonic Hedgehog (SHH) signaling pathways. Our study not only established an ideal platform to investigate the transcriptional network regulating the RPE cell fate determination,but also provided an alternative strategy to generate functional RPE cells that complement the use of pluripotent stem cells for disease modeling,drug screening,and cell therapy of retinal degeneration.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Gordon DJ et al. (JUN 2015)
Oncogene 35 August 1--11
Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells.
Oncogenic transformation in Ewing sarcoma tumors is driven by the fusion oncogene EWS-FLI1. However,despite the well-established role of EWS-FLI1 in tumor initiation,the development of models of Ewing sarcoma in human cells with defined genetic elements has been challenging. Here,we report a novel approach to model the initiation of Ewing sarcoma tumorigenesis that exploits the developmental and pluripotent potential of human embryonic stem cells. The inducible expression of EWS-FLI1 in embryoid bodies,or collections of differentiating stem cells,generates cells with properties of Ewing sarcoma tumors,including characteristics of transformation. These cell lines exhibit anchorage-independent growth,a lack of contact inhibition and a strong Ewing sarcoma gene expression signature. Furthermore,these cells also demonstrate a requirement for the persistent expression of EWS-FLI1 for cell survival and growth,which is a hallmark of Ewing sarcoma tumors.Oncogene advance online publication,12 October 2015; doi:10.1038/onc.2015.368.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
05893
85850
85857
85870
85875
产品名:
ACCUTASE™
AggreWell™ EB形成培养基
mTeSR™1
mTeSR™1
Janson C et al. (OCT 2015)
Cytogenetic and Genome Research 146 4 251--260
Replication Stress and Telomere Dysfunction Are Present in Cultured Human Embryonic Stem Cells
Replication stress causes DNA damage at fragile sites in the genome. DNA damage at telomeres can initiate breakage-fusion-bridge cycles and chromosome instability,which can result in replicative senescence or tumor formation. Little is known about the extent of replication stress or telomere dysfunction in human embryonic stem cells (hESCs). hESCs are grown in culture with the expectation of being used therapeutically in humans,making it important to minimize the levels of replication stress and telomere dysfunction. Here,the hESC line UCSF4 was cultured in a defined medium with growth factor Activin A,exogenous nucleosides,or DNA polymerase inhibitor aphidicolin. We used quantitative fluorescence in situ hybridization to analyze individual telomeres for dysfunction and observed that it can be increased by aphidicolin or Activin A. In contrast,adding exogenous nucleosides relieved dysfunction,suggesting that telomere dysfunction results from replication stress. Whether these findings can be applied to other hESC lines remains to be determined. However,because the loss of telomeres can lead to chromosome instability and cancer,we conclude that hESCs grown in culture for future therapeutic purposes should be routinely checked for replication stress and telomere dysfunction.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Higuchi A et al. (DEC 2015)
Scientific Reports 5 18136
Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity
The tentative clinical application of human pluripotent stem cells (hPSCs),such as human embryonic stem cells and human induced pluripotent stem cells,is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore,we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture,whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
McCabe KL et al. (DEC 2015)
PloS one 10 12 e0145266
Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation.
AIM To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies. MATERIALS AND METHODS Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology,expression of corneal endothelial markers,and microarray analysis of gene expression. RESULTS hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells,expressed Zona Occludens 1 (ZO-1) and Na+/K+ATPase$\$1 (ATPA1) on the apical surface in monolayer culture,and produced the key proteins of Descemet's membrane,Collagen VIII$\$1 and VIII$\$2 (COL8A1 and 8A2). Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis. CONCLUSION hESC-CECs are morphologically similar,express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Pfaender S et al. ( 2016)
Neural plasticity 2016 ID 3760702 1--15
Cellular Zinc Homeostasis Contributes to Neuronal Differentiation in Human Induced Pluripotent Stem Cells.
Disturbances in neuronal differentiation and function are an underlying factor of many brain disorders. Zinc homeostasis and signaling are important mediators for a normal brain development and function,given that zinc deficiency was shown to result in cognitive and emotional deficits in animal models that might be associated with neurodevelopmental disorders. One underlying mechanism of the observed detrimental effects of zinc deficiency on the brain might be impaired proliferation and differentiation of stem cells participating in neurogenesis. Thus,to examine the molecular mechanisms regulating zinc metabolism and signaling in differentiating neurons,using a protocol for motor neuron differentiation,we characterized the expression of zinc homeostasis genes during neurogenesis using human induced pluripotent stem cells (hiPSCs) and evaluated the influence of altered zinc levels on the expression of zinc homeostasis genes,cell survival,cell fate,and neuronal function. Our results show that zinc transporters are highly regulated genes during neuronal differentiation and that low zinc levels are associated with decreased cell survival,altered neuronal differentiation,and,in particular,synaptic function. We conclude that zinc deficiency in a critical time window during brain development might influence brain function by modulating neuronal differentiation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Alshawaf AJ et al. ( 2017)
Stem cells international 2017 7848932
WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells.
Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker,TBR2,and also glial marker,S100β. In contrast,inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers,PAX6 and EAAT1,respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Freude KK et al. (JUL 2011)
Journal of Biological Chemistry 286 27 24264--24274
Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells.
Human embryonic stem cells (hESCs) offer tremendous potential for not only treating neurological disorders but also for their ability to serve as vital reagents to model and investigate human disease. To further our understanding of a key protein involved in Alzheimer disease pathogenesis,we stably overexpressed amyloid precursor protein (APP) in hESCs. Remarkably,we found that APP overexpression in hESCs caused a rapid and robust differentiation of pluripotent stem cells toward a neural fate. Despite maintenance in standard hESC media,up to 80% of cells expressed the neural stem cell marker nestin,and 65% exhibited the more mature neural marker β-3 tubulin within just 5 days of passaging. To elucidate the mechanism underlying the effects of APP on neural differentiation,we examined the proteolysis of APP and performed both gain of function and loss of function experiments. Taken together,our results demonstrate that the N-terminal secreted soluble forms of APP (in particular sAPPβ) robustly drive neural differentiation of hESCs. Our findings not only reveal a novel and intriguing role for APP in neural lineage commitment but also identify a straightforward and rapid approach to generate large numbers of neurons from human embryonic stem cells. These novel APP-hESC lines represent a valuable tool to investigate the potential role of APP in development and neurodegeneration and allow for insights into physiological functions of this protein.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Esteban MA et al. (JAN 2010)
Cell stem cell 6 1 71--9
Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However,the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound,vitamin C (Vc),enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence,a recently identified roadblock for reprogramming. In addition,Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
72132
85850
85857
85870
85875
产品名:
抗坏血酸(Ascorbic Acid)
mTeSR™1
mTeSR™1
Wilson KD et al. (JUL 2010)
Cancer research 70 13 5539--48
Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells
Human embryonic stem cells (hESC) present a novel platform for in vitro investigation of the early embryonic cellular response to ionizing radiation. Thus far,no study has analyzed the genome-wide transcriptional response to ionizing radiation in hESCs,nor has any study assessed their ability to form teratomas,the definitive test of pluripotency. In this study,we use microarrays to analyze the global gene expression changes in hESCs after low-dose (0.4 Gy),medium-dose (2 Gy),and high-dose (4 Gy) irradiation. We identify genes and pathways at each radiation dose that are involved in cell death,p53 signaling,cell cycling,cancer,embryonic and organ development,and others. Using Gene Set Enrichment Analysis,we also show that the expression of a comprehensive set of core embryonic transcription factors is not altered by radiation at any dose. Transplantation of irradiated hESCs to immune-deficient mice results in teratoma formation from hESCs irradiated at all doses,definitive proof of pluripotency. Further,using a bioluminescence imaging technique,we have found that irradiation causes hESCs to initially die after transplantation,but the surviving cells quickly recover by 2 weeks to levels similar to control. To conclude,we show that similar to somatic cells,irradiated hESCs suffer significant death and apoptosis after irradiation. However,they continue to remain pluripotent and are able to form all three embryonic germ layers. Studies such as this will help define the limits for radiation exposure for pregnant women and also radiotracer reporter probes for tracking cellular regenerative therapies.
View Publication