Reprogramming of T cells from human peripheral blood.
Vogt-Koyanagi-Harada (VKH) disease (and sympathetic ophthalmia) is an ocular inflammatory disease that is considered to be a cell-mediated autoimmune disease against melanocytes. The purpose of this study was to determine the Ags specific to VKH disease and to develop an animal model of VKH disease. We found that exposure of lymphocytes from patients with VKH disease to peptides (30-mer) derived from the tyrosinase family proteins led to significant proliferation of the lymphocytes. Immunization of these peptides into pigmented rats induced ocular and extraocular changes that highly resembled human VKH disease,and we suggest that an experimental VKH disease was induced in these rats. We conclude that VKH disease is an autoimmune disease against the tyrosinase family proteins.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
05920
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Sokolov MV and Neumann RD (JAN 2010)
PLoS ONE 5 12 e14195
Radiation-induced bystander effects in cultured human stem cells.
BACKGROUND: The radiation-induced bystander effect" (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However�
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Benvenuto F et al. (JUL 2007)
Stem cells (Dayton,Ohio) 25 7 1753--60
Human mesenchymal stem cells promote survival of T cells in a quiescent state.
Mesenchymal stem cells (MSC) are part of the bone marrow that provides signals supporting survival and growth of bystander hematopoietic stem cells (HSC). MSC modulate also the immune response,as they inhibit proliferation of lymphocytes. In order to investigate whether MSC can support survival of T cells,we investigated MSC capacity of rescuing T lymphocytes from cell death induced by different mechanisms. We observed that MSC prolong survival of unstimulated T cells and apoptosis-prone thymocytes cultured under starving conditions. MSC rescued T cells from activation induced cell death (AICD) by downregulation of Fas receptor and Fas ligand on T cell surface and inhibition of endogenous proteases involved in cell death. MSC dampened also Fas receptor mediated apoptosis of CD95 expressing Jurkat leukemic T cells. In contrast,rescue from AICD was not associated with a significant change of Bcl-2,an inhibitor of apoptosis induced by cell stress. Accordingly,MSC exhibited a minimal capacity of rescuing Jurkat cells from chemically induced apoptosis,a process disrupting the mitochondrial membrane potential regulated by Bcl-2. These results suggest that MSC interfere with the Fas receptor regulated process of programmed cell death. Overall,MSC can inhibit proliferation of activated T cells while supporting their survival in a quiescent state,providing a model of their activity inside the HSC niche. Disclosure of potential conflicts of interest is found at the end of this article.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Yao Y et al. (FEB 2012)
Human gene therapy 23 2 238--42
Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells.
C-C chemokine receptor type 5 (CCR5) is a major co-receptor for the entry of human immunodeficiency virus type-1 (HIV-1) into target cells. Human hematopoietic stem cells (hHSCs) with naturally occurring CCR5 deletions (Δ32) or artificially disrupted CCR5 have shown potential for curing acquired immunodeficiency syndrome (AIDS). However,Δ32 donors are scarce,heterologous bone marrow transplantation is not exempt of risks,and genetic engineering of autologous hHSCs is not trivial. Here,we have disrupted the CCR5 locus of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) using specific zinc finger nucleases (ZFNs) combined with homologous recombination. The modified hESCs and hiPSCs retained pluripotent characteristics and could be differentiated in vitro into CD34(+) cells that formed all types of hematopoietic colonies. Our results suggest the potential of using patient-specific hHSCs derived from ZFN-modified hiPSCs for treating AIDS.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
27145
04435
04445
85850
85857
85870
85875
产品名:
MethoCult™H4435富集
MethoCult™H4435富集
mTeSR™1
mTeSR™1
Tasnim F et al. (NOV 2015)
Biomaterials 70 115--125
Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules.
Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy,disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers,urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen,Chlorpromazine,Diclofenac,Digoxin,Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore,SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Saha K et al. (NOV 2011)
Proceedings of the National Academy of Sciences of the United States of America 108 46 18714--9
Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions
The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here,we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells,as predicted from a numerical model of cell migration,and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further,reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Xing J et al. (MAY 2015)
Scientific Reports 5 November 2014 10038
A method for human teratogen detection by geometrically confined cell differentiation and migration
Unintended exposure to teratogenic compounds can lead to various birth defects; however current animal-based testing is limited by time,cost and high inter-species variability. Here,we developed a human-relevant in vitro model,which recapitulated two cellular events characteristic of embryogenesis,to identify potentially teratogenic compounds. We spatially directed mesoendoderm differentiation,epithelial-mesenchymal transition and the ensuing cell migration in micropatterned human pluripotent stem cell (hPSC) colonies to collectively form an annular mesoendoderm pattern. Teratogens could disrupt the two cellular processes to alter the morphology of the mesoendoderm pattern. Image processing and statistical algorithms were developed to quantify and classify the compounds' teratogenic potential. We not only could measure dose-dependent effects but also correctly classify species-specific drug (Thalidomide) and false negative drug (D-penicillamine) in the conventional mouse embryonic stem cell test. This model offers a scalable screening platform to mitigate the risks of teratogen exposures in human.
View Publication
Sessarego N et al. (MAR 2008)
Haematologica 93 3 339--46
Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application.
BACKGROUND: Mesenchymal stromal cells are multipotent cells considered to be of great promise for use in regenerative medicine. However,the cell dose may be a critical factor in many clinical conditions and the yield resulting from the ex vivo expansion of mesenchymal stromal cells derived from bone marrow may be insufficient. Thus,alternative sources of mesenchymal stromal cells need to be explored. In this study,mesenchymal stromal cells were successfully isolated from second trimester amniotic fluid and analyzed for chromosomal stability to validate their safety for potential utilization as a cell therapy product. DESIGN AND METHODS: Mesenchymal stromal cells were expanded up to the sixth passage starting from amniotic fluid using different culture conditions to optimize large-scale production. RESULTS: The highest number of mesenchymal stromal cells derived from amniotic fluid was reached at a low plating density; in these conditions the expansion of mesenchymal stromal cells from amniotic fluid was significantly greater than that of adult bone marrow-derived mesenchymal stromal cells. Mesenchymal stromal cells from amniotic fluid represent a relatively homogeneous population of immature cells with immunosuppressive properties and extensive proliferative potential. Despite their high proliferative capacity in culture,we did not observe any karyotypic abnormalities or transformation potential in vitro nor any tumorigenic effect in vivo. CONCLUSIONS: Fetal mesenchymal stromal cells can be extensively expanded from amniotic fluid,showing no karyotypic abnormalities or transformation potential in vitro and no tumorigenic effect in vivo. They represent a relatively homogeneous population of immature mesenchymal stromal cells with long telomeres,immunosuppressive properties and extensive proliferative potential. Our results indicate that amniotic fluid represents a rich source of mesenchymal stromal cells suitable for banking to be used when large amounts of cells are required.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Jones RJ et al. (JUL 1996)
Blood 88 2 487--91
Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity.
The classical definition of lymphohematopoietic stem cells (LHSC),the most primitive progenitors of all blood cells,requires that they have the capacity for self-renewal and for the long-term production of all blood cell lineages. However,other characteristics of LHSC have been debated. Our previous data suggested that mouse LHSC are very slowly proliferating cells that generate delayed multilineage engraftment,while radioprotection" (rapid engraftment that will prevent early death from radiation-induced marrow aplasia) results from more committed progenitors. Alternatively�
View Publication
Duportet X et al. (DEC 2014)
Nucleic Acids Research 42 21 13440--13451
A platform for rapid prototyping of synthetic gene networks in mammalian cells
Mammalian synthetic biology may provide novel therapeutic strategies,help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet,our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design,construction and screening of synthetic gene networks. To address this problem,here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units,27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept,we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements,genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines.
View Publication