Jin S et al. (JUL 2012)
Tissue Engineering Part A 18 13-14 1419--30
Porous membrane substrates offer better niches to enhance the Wnt signaling and promote human embryonic stem cell growth and differentiation.
Human embryonic stem cells (hESCs) require specific niches for adhesion,expansion,and lineage-specific differentiation. In this study,we showed that a membrane substrate offers better tissue niches for hESC attachment,spreading,proliferation,and differentiation. The cell doubling time was shortened from 46.3±5.7 h for hESCs grown on solid substrates to 25.6±2.6 h for those on polyester (PE) membrane substrates with pore size of 0.4 μm. In addition,we observed an increase of approximately five- to ninefold of definitive endoderm marker gene expression in hESCs differentiated on PE or polyethylene terephthalate membrane substrates. Global gene expression analysis revealed upregulated expressions of a number of extracellular matrix and cell adhesion molecules in hESCs grown on membrane substrates. Further,an enhanced nuclear translocation of β-catenin was detected in these cells. These observations suggested the augmentation of Wnt signaling in hESCs grown on membrane substrates. These results also demonstrated that a membrane substrate can offer better physicochemical cues for enhancing in vitro hESC attachment,proliferation,and differentiation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Crook JM et al. (MAR 2015)
Expert review of neurotherapeutics 15 3 295--304
The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy.
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods,enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment,such as schizophrenia,epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders,canvassing proven and putative advantages,current constraints,and future prospects of next-generation culture systems for biomedical research and translation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Romieu-Mourez R et al. (JUN 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 12 7963--73
Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype.
Bone marrow-derived mesenchymal stromal cells (MSC) possess an immune plasticity manifested by either an immunosuppressive or,when activated with IFN-gamma,an APC phenotype. Herein,TLR expression by MSC and their immune regulatory role were investigated. We observed that human MSC and macrophages expressed TLR3 and TLR4 at comparable levels and TLR-mediated activation of MSC resulted in the production of inflammatory mediators such as IL-1beta,IL-6,IL-8/CXCL8,and CCL5. IFN-alpha or IFN-gamma priming up-regulated production of these inflammatory mediators and expression of IFNB,inducible NO synthase (iNOS),and TRAIL upon TLR activation in MSC and macrophages,but failed to induce IL-12 and TNF-alpha production in MSC. Nonetheless,TLR activation in MSC resulted in the formation of an inflammatory site attracting innate immune cells,as evaluated by human neutrophil chemotaxis assays and by the analysis of immune effectors retrieved from Matrigel-embedded MSC injected into mice after in vitro preactivation with cytokines and/or TLR ligands. Hence,TLR-activated MSC are capable of recruiting immune inflammatory cells. In addition,IFN priming combined with TLR activation may increase immune responses induced by Ag-presenting MSC through presentation of Ag in an inflammatory context,a mechanism that could be applied in a cell-based vaccine.
View Publication
产品类型:
产品号#:
19257
19257RF
产品名:
Mitne-Neto M et al. (SEP 2011)
Human Molecular Genetics 20 18 3642--52
Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients.
Amyotrophic lateral sclerosis (ALS) is an incurable neuromuscular disease that leads to a profound loss of life quality and premature death. Around 10% of the cases are inherited and ALS8 is an autosomal dominant form of familial ALS caused by mutations in the vamp-associated protein B/C (VAPB) gene. The VAPB protein is involved in many cellular processes and it likely contributes to the pathogenesis of other forms of ALS besides ALS8. A number of successful drug tests in ALS animal models could not be translated to humans underscoring the need for novel approaches. The induced pluripotent stem cells (iPSC) technology brings new hope,since it can be used to model and investigate diseases in vitro. Here we present an additional tool to study ALS based on ALS8-iPSC. Fibroblasts from ALS8 patients and their non-carrier siblings were successfully reprogrammed to a pluripotent state and differentiated into motor neurons. We show for the first time that VAPB protein levels are reduced in ALS8-derived motor neurons but,in contrast to over-expression systems,cytoplasmic aggregates could not be identified. Our results suggest that optimal levels of VAPB may play a central role in the pathogenesis of ALS8,in agreement with the observed reduction of VAPB in sporadic ALS.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ferreira RB et al. (APR 2017)
Oncotarget 8 17 28971--28989
Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells.
Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus,new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors,and Triple-Negative" Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor�
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chen G et al. (FEB 2015)
Circulation: Arrhythmia and Electrophysiology 8 1 193--202
Phospholamban as a crucial determinant of the inotropic response of human pluripotent stem cell-derived ventricular cardiomyocytes and engineered 3-dimensional tissue constructs.
BACKGROUND Human (h) embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) serve as a potential unlimited ex vivo source of cardiomyocytes (CMs). However,a well-accepted roadblock has been their immature phenotype. hESC/iPSC-derived ventricular (v) CMs and their engineered cardiac microtissues (hvCMTs) similarly displayed positive chronotropic but null inotropic responses to $\$-adrenergic stimulation. Given that phospholamban (PLB) is robustly present in adult but poorly expressed in hESC/iPSC-vCMs and its defined biological role in $\$-adrenergic signaling,we investigated the functional consequences of PLB expression in hESC/iPSC-vCMs and hvCMTs. METHODS AND RESULTS First,we confirmed that PLB protein was differentially expressed in hESC (HES2,H9)- and iPSC-derived and adult vCMs. We then transduced hES2-vCMs with the recombinant adenoviruses (Ad) Ad-PLB or Ad-S16E-PLB to overexpress wild-type PLB or the pseudophosphorylated point-mutated variant,respectively. As anticipated from the inhibitory effect of unphosphorylated PLB on sarco/endoplasmic reticulum Ca2+-ATPase,Ad-PLB transduction significantly attenuated electrically evoked Ca2+ transient amplitude and prolonged the 50% decay time. Importantly,Ad-PLB-transduced hES2-vCMs uniquely responded to isoproterenol. Ad-S16E-PLB-transduced hES2-vCMs displayed an intermediate phenotype. The same trends were observed with H9- and iPSC-vCMs. Directionally,similar results were also seen with Ad-PLB-transduced and Ad-S16E-transduced hvCMTs. However,Ad-PLB altered neither the global transcriptome nor ICa,L,implicating a PLB-specific effect. CONCLUSIONS Engineered upregulation of PLB expression in hESC/iPSC-vCMs restores a positive inotropic response to $\$-adrenergic stimulation. These results not only provide a better mechanistic understanding of the immaturity of hESC/iPSC-vCMs but will also lead to improved disease models and transplantable prototypes with adult-like physiological responses.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Varga E et al. (OCT 2016)
Stem cell research 17 3 514--516
Generation of human induced pluripotent stem cell (iPSC) line from an unaffected female carrier of Mucopolysaccharidosis type II (MPS II) disorder.
Peripheral blood was collected from a 39-year-old unaffected female carrier of an X-linked recessive mutation of Iduronate 2-sulfatase gene (NM000202.7(IDS):c.85CtextgreaterT) causing MPS II (OMIM 309900). Peripheral blood mononuclear cells (PBMCs) were reprogrammed by lentiviral delivery of a self-silencing hOKSM polycistronic vector. The pluripotency of iPSC line was confirmed by the expression of pluripotency-associated markers and in vitro spontaneous differentiation towards the 3 germ layers. The iPSC showed normal karyotype. The line offers a good platform to study MPS II pathophysiology,for drug testing,early biomarker discovery and gene therapy studies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lund RJ et al. (NOV 2013)
Stem Cell Research 11 3 1024--1036
Karyotypically abnormal human ESCs are sensitive to HDAC inhibitors and show altered regulation of genes linked to cancers and neurological diseases
Genomic abnormalities may accumulate in human embryonic stem cells (hESCs) during in vitro maintenance. Characterization of the mechanisms enabling survival and expansion of abnormal hESCs is important due to consequences of genetic changes for the therapeutic utilization of stem cells. Furthermore,these cells provide an excellent model to study transformation in vitro. We report here that the histone deacetylase proteins,HDAC1 and HDAC2,are increased in karyotypically abnormal hESCs when compared to their normal counterparts. Importantly,similar to many cancer cell lines,we found that HDAC inhibitors repress proliferation of the karyotypically abnormal hESCs,whereas normal cells are more resistant to the treatment. The decreased proliferation correlates with downregulation of HDAC1 and HDAC2 proteins,induction of the proliferation inhibitor,cyclin-dependent kinase inhibitor 1A (CDKN1A),and altered regulation of tumor suppressor protein Retinoblastoma 1 (RB1). Through genome-wide transcriptome analysis we have identified genes with altered expression and responsiveness to HDAC inhibition in abnormal cells. Most of these genes are linked to severe developmental and neurological diseases and cancers. Our results highlight the importance of epigenetic mechanisms in the regulation of genomic stability of hESCs,and provide valuable candidates for targeted and selective growth inhibition of karyotypically abnormal cells. textcopyright 2013 Elsevier B.V.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Barbaric I et al. (SEP 2010)
Stem Cell Research 5 2 104--19
Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies.
Understanding the complex mechanisms that govern the fate decisions of human embryonic stem cells (hESCs) is fundamental to their use in cell replacement therapies. The progress of dissecting these mechanisms will be facilitated by the availability of robust high-throughput screening assays on hESCs. In this study,we report an image-based high-content assay for detecting compounds that affect hESC survival or pluripotency. Our assay was designed to detect changes in the phenotype of hESC colonies by quantifying multiple parameters,including the number of cells in a colony,colony area and shape,intensity of nuclear staining,and the percentage of cells in the colony that express a marker of pluripotency (TRA-1-60),as well as the number of colonies per well. We used this assay to screen 1040 compounds from two commercial compound libraries,and identified 17 that promoted differentiation,as well as 5 that promoted survival of hESCs. Among the novel small compounds we identified with activity on hESC are several steroids that promote hESC differentiation and the antihypertensive drug,pinacidil,which affects hESC survival. The analysis of overlapping targets of pinacidil and the other survival compounds revealed that activity of PRK2,ROCK,MNK1,RSK1,and MSK1 kinases may contribute to the survival of hESCs.
View Publication
Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model.
Bone marrow-derived endothelial precursor cells incorporate into neovasculature and have been successfully used as vehicles for gene delivery to brain tumors. To determine whether systemically administered Sca1+ bone marrow cells labeled with superparamagnetic iron oxide nanoparticles can be detected by in vivo magnetic resonance imaging in a mouse brain tumor model,mouse Sca1+ cells were labeled in vitro with ferumoxides-poly-L-lysine complexes. Labeled or control cells were administered intravenously to glioma-bearing severe combined immunodeficient (SCID) mice. Magnetic resonance imaging (MRI) was performed during tumor growth. Mice that received labeled cells demonstrated hypointense regions within the tumor that evolved over time and developed a continuous dark hypointense ring at a consistent time point. This effect was not cleared by administration of a gadolinium contrast agent. Histology showed iron-labeled cells around the tumor rim in labeled mice,which expressed CD31 and von Willebrand factor,indicating the transplanted cells detected in the tumor have differentiated into endothelial-like cells. These results demonstrate that MRI can detect the incorporation of magnetically labeled bone marrow-derived precursor cells into tumor vasculature as part of ongoing angiogenesis and neovascularization. This technique can be used to directly identify neovasculature in vivo and to facilitate gene therapy by noninvasively monitoring these cells as gene delivery vectors.
View Publication
产品类型:
产品号#:
09600
09650
09850
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Ginis I et al. (JUN 2012)
Tissue engineering. Part C,Methods 18 6 453--63
Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium.
Achievements in tissue engineering using mesenchymal stem cells (MSC) demand a clinically acceptable off-the-shelf" cell therapy product. Efficacy of cryopreservation of human bone marrow-derived MSC in clinically safe animal product-free medium containing 2% 5% and 10% dimethyl sulfoxide (DMSO) was evaluated by measuring cell recovery viability apoptosis proliferation rate expression of a broad panel of MSC markers and osteogenic differentiation. Rate-controlled freezing in CryoStor media was performed in a programmable cell freezer. About 95% of frozen cells were recovered as live cells after freezing in CryoStor solutions with 5% and 10% DMSO followed by storage in liquid nitrogen for 1 month. Cell recovery after 5 months storage was 72% and 80% for 5% and 10% DMSO respectively. Measurements of caspase 3 activity demonstrated that 15.5% and 12.8% of cells after 1 month and 18.3% and 12.9% of cells after 5 months storage in 5% and 10% DMSO respectively were apoptotic. Proliferation of MSC recovered after cryopreservation was measured during 2 weeks post-plating. Proliferation rate was not compromised and was even enhanced. Cryopreservation did not alter expression of MSC markers. Quantitative analysis of alkaline phosphatase (ALP) activity ALP surface expression and Ca deposition in previously cryopreserved MSC and then differentiated for 3 weeks in osteogenic medium demonstrated the same degree of osteogenic differentiation as in unfrozen parallel cultures. Cell viability and functional parameters were analyzed in MSC after short-term storage at 4°C in HypoThermosol-FRS solution also free of animal products. Hypothermic storage for 2 and 4 days resulted in about 100% and 85% cell recovery respectively less than 10% of apoptotic cells and normal proliferation marker expression and osteogenic potential. Overall our results demonstrate that human MSC could be successfully cryopreserved for banking and clinical applications and delivered to the bedside in clinically safe protective reagents.
View Publication