An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells.
The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here,through the sequential in vitro targeting of selected signaling pathways,we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex,as an extracellular matrix,could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP,SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL,and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells,1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally,ES-DBCs were responsive to high glucose in static incubation and perifusion studies,and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion,targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs,small molecules or genes that may have potential to influence beta-cell function.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang Y et al. (DEC 2012)
Circulation research 111 12 1494--1503
Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging
RATIONALE: Molecular imaging has proven to be a vital tool in the characterization of stem cell behavior in vivo. However,the integration of reporter genes has typically relied on random integration,a method that is associated with unwanted insertional mutagenesis and positional effects on transgene expression.backslashnbackslashnOBJECTIVE: To address this barrier,we used genome editing with zinc finger nuclease (ZFN) technology to integrate reporter genes into a safe harbor gene locus (PPP1R12C,also known as AAVS1) in the genome of human embryonic stem cells and human induced pluripotent stem cells for molecular imaging.backslashnbackslashnMETHODS AND RESULTS: We used ZFN technology to integrate a construct containing monomeric red fluorescent protein,firefly luciferase,and herpes simplex virus thymidine kinase reporter genes driven by a constitutive ubiquitin promoter into a safe harbor locus for fluorescence imaging,bioluminescence imaging,and positron emission tomography imaging,respectively. High efficiency of ZFN-mediated targeted integration was achieved in both human embryonic stem cells and induced pluripotent stem cells. ZFN-edited cells maintained both pluripotency and long-term reporter gene expression. Functionally,we successfully tracked the survival of ZFN-edited human embryonic stem cells and their differentiated cardiomyocytes and endothelial cells in murine models,demonstrating the use of ZFN-edited cells for preclinical studies in regenerative medicine.backslashnbackslashnCONCLUSION: Our study demonstrates a novel application of ZFN technology to the targeted genetic engineering of human pluripotent stem cells and their progeny for molecular imaging in vitro and in vivo.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Sato N and Brivanlou A ( 2015)
1307 71--88
Microarray Approach to Identify the Signaling Network Responsible for Self-Renewal of Human Embryonic Stem Cells
Here we introduce the representative method to culture HESCs under the feeder and feeder-free conditions,the former of which is used to maintain or expand undifferentiated HESCs,and the latter can be used for the preparation of pure HESCs RNA samples,or for screening factors influential on self-renewal of HESCs. We also describe a protocol and tips for conducting gene chip analysis focusing on widely used Affymetrix Microarrays. These techniques will provide us unprecedented scale of biological information that would illuminate a key to decipher complex signaling networks controlling pluripotency.
View Publication
产品类型:
产品号#:
05854
05855
05860
05880
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mFreSR™
mFreSR™
mTeSR™1
mTeSR™1
Akopian V et al. (APR 2010)
In vitro cellular & developmental biology. Animal 46 3-4 247--258
Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells.
There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support,but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study,five separate laboratories,each with experience in human embryonic stem cell culture,used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods,with propagation in the presence of Knockout Serum Replacer,FGF-2,and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment,death,and differentiated morphology by phase contrast microscopy,for growth by serial cell counts,and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems,only the control and those based on two commercial media,mTeSR1 and STEMPRO,supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment,cell death,or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study,and the lack of success with other formulations from academic groups compared to previously published results,include: the complex combination of growth factors present in the commercial preparations; improved development,manufacture,and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chen A et al. (JAN 2014)
Biomaterials 35 2 675--683
Integrated platform for functional monitoring of biomimetic heart sheets derived from human pluripotent stem cells
We present an integrated platform comprised of a biomimetic substrate and physiologically aligned human pluripotent stem cell-derived cardiomyocytes (CMs) with optical detection and algorithms to monitor subtle changes in cardiac properties under various conditions. In the native heart,anisotropic tissue structures facilitate important concerted mechanical contraction and electrical propagation. To recapitulate the architecture necessary for a physiologically accurate heart response,we have developed a simple way to create large areas of aligned CMs with improved functional properties using shrink-wrap film. Combined with simple bright field imaging,obviating the need for fluorescent labels or beads,we quantify and analyze key cardiac contractile parameters. To evaluate the performance capabilities of this platform,the effects of two drugs,E-4031 and isoprenaline,were examined. Cardiac cells supplemented with E-4031 exhibited an increase in contractile duration exclusively due to prolonged relaxation peak. Notably,cells aligned on the biomimetic platform responded detectably down to a dosage of 3nm E-4031,which is lower than the IC50 in the hERG channel assay. Cells supplemented with isoprenaline exhibited increased contractile frequency and acceleration. Interestingly,cells grown on the biomimetic substrate were more responsive to isoprenaline than those grown on the two control surfaces,suggesting topography may help induce more mature ion channel development. This simple and low-cost platform could thus be a powerful tool for longitudinal assays as well as an effective tool for drug screening and basic cardiac research. ?? 2013 Elsevier Ltd.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chen G et al. ( 2014)
PloS one 9 6 e98565
Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium.
BACKGROUND Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are in the foreground as a preferable application for treating diseases. However,the safety of hUC-MSCs after long-term culturing in vitro in serum-free medium remains unclear. METHODS hUC-MSCs were separated by adherent tissue culture. hUC-MSCs were cultured in serum-free MesenCult-XF medium and FBS-bases DMEM complete medium. At the 1st,3rd,5th,8th,10th,and 15th passage,the differentiation of MSCs into osteogenic,chondrogenic,and adipogenic cells was detected,and MTT,surface antigens were measured. Tumorigenicity was analyzed at the 15th passage. Conventional karyotyping was performed at passage 0,8,and 15. The telomerase activity of hUC-MSCs at passage 1-15 was analyzed. RESULTS Flow cytometry analysis showed that very high expression was detected for CD105,CD73,and CD90 and very low expression for CD45,CD34,CD14,CD79a,and HLA-DR. MSCs could differentiate into osteocytes,chondrocytes,and adipocytes in vitro. There was no obvious chromosome elimination,displacement,or chromosomal imbalance as determined from the guidelines of the International System for Human Cytogenetic Nomenclature. Telomerase activity was down-regulated significantly when the culture time was prolonged. Further,no tumors formed in rats injected with hUC-MSCs (P15) cultured in serum-free and in serum-containing conditions. CONCLUSION Our data showed that hUC-MSCs met the International Society for Cellular Therapy standards for conditions of long-term in vitro culturing at P15. Since hUC-MSCs can be safely expanded in vitro and are not susceptible to malignant transformation in serum-free medium,these cells are suitable for cell therapy.
View Publication
产品类型:
产品号#:
05420
05429
05424
产品名:
Conklin JF et al. ( 2012)
Nature communications 3 May 1244
The RB family is required for the self-renewal and survival of human embryonic stem cells.
The mechanisms ensuring the long-term self-renewal of human embryonic stem cells are still only partly understood,limiting their use in cellular therapies. Here we found that increased activity of the RB cell cycle inhibitor in human embryonic stem cells induces cell cycle arrest,differentiation and cell death. Conversely,inactivation of the entire RB family (RB,p107 and p130) in human embryonic stem cells triggers G2/M arrest and cell death through functional activation of the p53 pathway and the cell cycle inhibitor p21. Differences in E2F target gene activation upon loss of RB family function between human embryonic stem cells,mouse embryonic stem cells and human fibroblasts underscore key differences in the cell cycle regulatory networks of human embryonic stem cells. Finally,loss of RB family function promotes genomic instability in both human and mouse embryonic stem cells,uncoupling cell cycle defects from chromosomal instability. These experiments indicate that a homeostatic level of RB activity is essential for the self-renewal and the survival of human embryonic stem cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Eirew P et al. (DEC 2008)
Nature medicine 14 12 1384--9
A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability.
Previous studies have demonstrated that normal mouse mammary tissue contains a rare subset of mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended with fibroblasts in collagen gels,which are then implanted under the kidney capsule of hormone-treated immunodeficient mice. After 2-8 weeks,the gels contain bilayered mammary epithelial structures,including luminal and myoepithelial cells,their in vitro clonogenic progenitors and cells that produce similar structures in secondary transplants. The regenerated clonogenic progenitors provide an objective indicator of input mammary stem cell activity and allow the frequency and phenotype of these human mammary stem cells to be determined by limiting-dilution analysis. This new assay procedure sets the stage for investigations of mechanisms regulating normal human mammary stem cells (and possibly stem cells in other tissues) and their relationship to human cancer stem cell populations.
View Publication
产品类型:
产品号#:
05601
产品名:
EpiCult™-B 人培养基
Sugimine Y et al. (SEP 2016)
International journal of hematology
A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges.
Various systems for differentiating hematopoietic cells from human pluripotent stem cells (PSCs) have been developed,although none have been fully optimized. In this report,we describe the development of a novel three-dimensional system for differentiating hematopoietic cells from PSCs using collagen sponges (CSs) reinforced with poly(ethylene terephthalate) fibers as a scaffold. PSCs seeded onto CSs were differentiated in a stepwise manner with appropriate cytokines under serum-free and feeder-free conditions. This process yielded several lineages of floating hematopoietic cells repeatedly for more than 1 month. On immunohistochemical staining,we detected CD34+ cells and CD45+ cells in the surface and cavities of the CS. Taking advantage of the portability of this system,we were able to culture multiple CSs together floating in medium,making it possible to harvest large numbers of hematopoietic cells repeatedly. Given these findings,we suggest that this novel three-dimensional culture system may be useful in the large-scale culture of PSC-derived hematopoietic cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Pettinato G et al. (NOV 2014)
PLoS ONE 9 11 e100742
ROCK inhibitor is not required for embryoid body formation from singularized human embryonic stem cells
We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin,+ROCKi/-spin,-ROCKi/+spin,and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions,including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation,elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment,and low-cost scalability,which will directly support automated,large-scale production of hEBs and hESC-derived cells needed for clinical,research,or therapeutic applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhang CC et al. (APR 2008)
Blood 111 7 3415--23
Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation.
Hematopoietic stem cells (HSCs) are the basis of bone marrow transplantation and are attractive target cells for hematopoietic gene therapy,but these important clinical applications have been severely hampered by difficulties in ex vivo expansion of HSCs. In particular,the use of cord blood for adult transplantation is greatly limited by the number of HSCs. Previously we identified angiopoietin-like proteins and IGF-binding protein 2 (IGFBP2) as new hormones that,together with other factors,can expand mouse bone marrow HSCs in culture. Here,we measure the activity of multipotent human severe combined immunodeficient (SCID)-repopulating cells (SRCs) by transplantation into the nonobese diabetic SCID (NOD/SCID) mice; secondary transplantation was performed to evaluate the self-renewal potential of SRCs. A serum-free medium containing SCF,TPO,and FGF-1 or Flt3-L cannot significantly support expansion of the SRCs present in human cord blood CD133+ cells. Addition of either angiopoietin-like 5 or IGF-binding protein 2 to the cultures led to a sizable expansion of HSC numbers,as assayed by NOD/SCID transplantation. A serum-free culture containing SCF,TPO,FGF-1,angiopoietin-like 5,and IGFBP2 supports an approximately 20-fold net expansion of repopulating human cord blood HSCs,a number potentially applicable to several clinical processes including HSC transplantation.
View Publication
产品类型:
产品号#:
09600
09650
28600
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
L-Calc™有限稀释软件
Yap LYW et al. (FEB 2011)
Tissue engineering. Part C,Methods 17 2 193--207
Defining a threshold surface density of vitronectin for the stable expansion of human embryonic stem cells.
Current methodology for pluripotent human embryonic stem cells (hESCs) expansion relies on murine sarcoma basement membrane substrates (Matrigel™),which precludes the use of these cells in regenerative medicine. To realize the clinical efficacy of hESCs and their derivatives,expansion of these cells in a defined system that is free of animal components is required. This study reports the successful propagation of hESCs (HES-3 and H1) for textgreater 20 passages on tissue culture-treated polystyrene plates,coated from 5 μg/mL of human plasma-purified vitronectin (VN) solution. Cells maintain expression of pluripotent markers Tra1-60 and OCT-4 and are karyotypically normal after 20 passages of continuous culture. In vitro and in vivo differentiation of hESC by embryoid body formation and teratoma yielded cells from the ecto-,endo-,and mesoderm lineages. VN immobilized on tissue culture polystyrene was characterized using a combination of X-ray photoemission spectroscopy,atomic force microscopy,and quantification of the VN surface density with a Bradford protein assay. Ponceau S staining was used to measure VN adsorption and desorption kinetics. Tuning the VN surface density,via the concentration of depositing solution,revealed a threshold surface density of 250 ng/cm²,which is required for hESCs attachment,proliferation,and differentiation. Cell attachment and proliferation assays on VN surface densities above this threshold show the substrate properties to be equally viable.
View Publication