Lee S-HH et al. (JUN 2000)
Nature biotechnology 18 6 675--9
Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells.
Embryonic stem (ES) cells are clonal cell lines derived from the inner cell mass of the developing blastocyst that can proliferate extensively in vitro and are capable of adopting all the cell fates in a developing embryo. Clinical interest in the use of ES cells has been stimulated by studies showing that isolated human cells with ES properties from the inner cell mass or developing germ cells can provide a source of somatic precursors. Previous studies have defined in vitro conditions for promoting the development of specific somatic fates,specifically,hematopoietic,mesodermal,and neurectodermal. In this study,we present a method for obtaining dopaminergic (DA) and serotonergic neurons in high yield from mouse ES cells in vitro. Furthermore,we demonstrate that the ES cells can be obtained in unlimited numbers and that these neuron types are generated efficiently. We generated CNS progenitor populations from ES cells,expanded these cells and promoted their differentiation into dopaminergic and serotonergic neurons in the presence of mitogen and specific signaling molecules. The differentiation and maturation of neuronal cells was completed after mitogen withdrawal from the growth medium. This experimental system provides a powerful tool for analyzing the molecular mechanisms controlling the functions of these neurons in vitro and in vivo,and potentially for understanding and treating neurodegenerative and psychiatric diseases.
View Publication
产品类型:
产品号#:
06902
06952
07152
07157
00321
00322
00323
00324
00325
产品名:
N2 添加物-A
Dienelt A and zur Nieden NI (MAR 2011)
Stem cells and development 20 3 465--474
Hyperglycemia impairs skeletogenesis from embryonic stem cells by affecting osteoblast and osteoclast differentiation.
High maternal blood glucose levels caused by diabetes mellitus can irreversibly lead to maldevelopment of the growing fetus with specific effects on the skeleton. To date,it remains controversial at which stage embryonic development is affected. Specifically during embryonic bone development,it is unclear whether diminished bone mineral density is caused by reduced osteoblast or rather enhanced osteoclast function. Therefore,the aim of this study was to characterize the growth as well as the skeletal differentiation capability of pluripotent embryonic stem cells (ESCs),which may serve as an in vitro model for all stages of embryonic development,when cultured in diabetic levels of D-glucose (4.5 g/L) versus physiological levels (1.0 g/L). Results showed that cells cultivated in physiological glucose gave rise to a higher number of colonies with an undifferentiated character as compared to cells grown in diabetic glucose concentrations. In contrast,these cultures were characterized by slightly decreased expression of proteins associated with the stem cell state. Furthermore,differentiation of ESCs into osteoblasts and osteoclasts was favored in physiological glucose concentrations,demonstrated by an increased matrix calcification,enhanced expression of cell-type-specific mRNAs,as well as activity of the cell-type-specific enzymes,alkaline,and tartrate resistant acidic phosphatase. In fact,this pattern was noted in murine as well as in primate ESCs. Our study suggests that an interplay between both the osteoblast and the osteoclast lineage is needed for proper skeletal development to occur,which seems impaired in hyperglycemic conditions.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Nefedova Y et al. (JAN 2004)
Journal of immunology (Baltimore,Md. : 1950) 172 1 464--74
Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer.
Abnormal differentiation of myeloid cells is one of the hallmarks of cancer. However,the molecular mechanisms of this process remain elusive. In this study,we investigated the effect of tumor-derived factors on Janus kinase (Jak)/STAT signaling in myeloid cells during their differentiation into dendritic cells. Tumor cell conditioned medium induced activation of Jak2 and STAT3,which was associated with an accumulation of immature myeloid cells. Jak2/STAT3 activity was localized primarily in these myeloid cells,which prevented the differentiation of immature myeloid cells into mature dendritic cells. This differentiation was restored after removal of tumor-derived factors. Inhibition of STAT3 abrogated the negative effects of these factors on myeloid cell differentiation,and overexpression of STAT3 reproduced the effects of tumor-derived factors. Thus,this is a first demonstration that tumor-derived factors may affect myeloid cell differentiation in cancer via constitutive activation of Jak2/STAT3.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
Giuntoli S et al. (MAY 2007)
Stem cells (Dayton,Ohio) 25 5 1119--25
Severe hypoxia defines heterogeneity and selects highly immature progenitors within clonal erythroleukemia cells.
We showed that resistance to severe hypoxia defines hierarchical levels within normal hematopoietic populations and that hypoxia modulates the balance between generation of progenitors and maintenance of hematopoietic stem cells (HSC) in favor of the latter. This study deals with the effects of hypoxia (0.1% oxygen) in vitro on Friend's murine erythroleukemia (MEL) cells,addressing the question of whether a clonal leukemia cell population comprise functionally different cell subsets characterized by different hypoxia resistance. To identify leukemia stem cells (LSC),we used the Culture Repopulating Ability (CRA) assay we developed to quantify in vitro stem cells capable of short-term reconstitution (STR). Hypoxia strongly inhibited the overall growth of MEL cell population,which,despite its clonality,comprised progenitors characterized by markedly different hypoxia-resistance. These included hypoxia-sensitive colony-forming cells and hypoxia-resistant STR-type LSC,capable of repopulating secondary liquid cultures of CRA assays,confirming what was previously shown for normal hematopoiesis. STR-type LSC were found capable not only of surviving in hypoxia but also of being mostly in cycle,in contrast with the fact that almost all hypoxia-surviving cells were growth-arrested and with what we previously found for HSC. However,quiescent LSC were also detected,capable of delayed culture repopulation with the same efficiency as STR-like LSC. The fact that even quiescent LSC,believed to sustain minimal residual disease in vivo,were found within the MEL cells indicates that all main components of leukemia cell populations may be present within clonal cell lines,which are therefore suitable to study the sensitivity of individual components to treatments. Disclosure of potential conflicts of interest is found at the end of this article.
View Publication
产品类型:
产品号#:
04230
产品名:
MethoCult™H4230
Bartel MA and Schaffer DV ( 2014)
1114 169--179
Enhanced gene targeting of adult and pluripotent stem cells using evolved adeno-Associated virus
Efficient approaches for the precise genetic engineering of stem cells can enhance both basic and applied stem cell research. Adeno-associated virus (AAV) vectors have demonstrated high-efficiency gene delivery and gene targeting to numerous cell types,and AAV vectors developed specifically for gene delivery to stem cells have further increased gene targeting frequency compared to plasmid construct techniques. This chapter details the production and purification techniques necessary to generate adeno-associated viral vectors for use in high-efficiency gene targeting of adult or pluripotent stem cell applications. Culture conditions used to achieve high gene targeting frequencies in rat neural stem cells and human pluripotent stem cells are also described.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Park S et al. (APR 2017)
Stem cell reports 8 4 1076--1085
A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells.
Sickle cell anemia affects millions of people worldwide and is an emerging global health burden. As part of a large NIH-funded NextGen Consortium,we generated a diverse,comprehensive,and fully characterized library of sickle-cell-disease-specific induced pluripotent stem cells (iPSCs) from patients of different ethnicities,β-globin gene (HBB) haplotypes,and fetal hemoglobin (HbF) levels. iPSCs stand to revolutionize the way we study human development,model disease,and perhaps eventually,treat patients. Here,we describe this unique resource for the study of sickle cell disease,including novel haplotype-specific polymorphisms that affect disease severity,as well as for the development of patient-specific therapeutics for this phenotypically diverse disorder. As a complement to this library,and as proof of principle for future cell- and gene-based therapies,we also designed and employed CRISPR/Cas gene editing tools to correct the sickle hemoglobin (HbS) mutation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Liang P et al. (APR 2013)
Circulation 127 16 1677--1691
Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity
BACKGROUND: Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds.backslashnbackslashnMETHODS AND RESULTS: Action potential duration and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome,familial hypertrophic cardiomyopathy,and familial dilated cardiomyopathy. Disease phenotypes were verified in long QT syndrome,hypertrophic cardiomyopathy,and dilated cardiomyopathy hiPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go-related gene expressing human embryonic kidney cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs,but not in human embryonic kidney cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by action potential duration and quantification of drug-induced arrhythmias such as early afterdepolarizations and delayed afterdepolarizations.backslashnbackslashnCONCLUSIONS: We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects,long QT syndrome,hypertrophic cardiomyopathy,and dilated cardiomyopathy patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than the standard human ether-a-go-go-related gene test or healthy control hiPSC-CM/hESC-CM screening assays.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Liu L et al. (OCT 2016)
Stem cell research 17 3 584--586
Generation of human embryonic stem cell line chHES-472 from abnormal embryos diagnosed with Spinocerebellar ataxia type 3.
Spinocerebellar ataxia type3 (SCA3) is an autosomal dominant neurodegenerative disorder. Human embryonic stem cell line chHES-472 was derived from abnormal embryo donated by SCA3 patient after preimplantation genetic diagnosis (PGD) treatment. This cell line had a normal karyotype and retained the disease-causing mutant in ATXN3 gene. Characteristic tests proved that the embryonic stem cell line presented typical markers of pluripotency and had the capability to form the three germlayers in vivo.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Clark PA et al. (JUL 2016)
Molecular pharmaceutics acs.molpharmaceut.6b00441
Analysis of Cancer-targeting Alkylphosphocholine Analog Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model.
Cancer-targeting alkylphosphocholine (APC) analogs are being clinically developed for diagnostic imaging,intraoperative visualization,and therapeutic applications. These APC analogs derived from chemically-synthesized phospholipid ethers were identified and optimized for cancer-targeting specificity using extensive structure-activity studies. While they strongly label human brain cancers associated with disrupted blood-brain barriers (BBB),APC permeability across intact BBB remains unknown. Three of our APC analogs,CLR1404 (PET radiotracer),CLR1501 (green fluorescence),and CLR1502 (near infrared fluorescence),were tested for permeability across a BBB model composed of human induced pluripotent stem cell-derived brain microvascular endothelial cells (iPSC-derived BMECs). This in vitro BBB system has reproducibly consistent high barrier integrity marked by high transendothelial electrical resistance (TEERtextgreater1500 Ω-cm(2)) and functional expression of drug efflux transporters. Our radioiodinated and fluorescent APC analogs demonstrated fairly low permeability across the iPSC-BMEC (35±5.7 (CLR1404),54±3.2 (CLR1501),and 26±4.9 (CLR1502) x10(-5) cm/min) compared with BBB-impermeable sucrose (13±2.5) and BBB-permeable diazepam (170±29). Only our fluorescent APC analogs (CLR1501,CLR1502) underwent BCRP and MRP polarized drug efflux transport in the brain-to-blood direction of the BBB model and this efflux can be specifically blocked with pharmacological inhibition. None of our tested APC analogs appeared to undergo substantial P-gp transport. Limited permeability of our APC analogs across an intact BBB into normal brain likely contributes to the high tumor to background ratios observed in initial human trials. Moreover,addition of fluorescent moieties to APCs resulted in greater BMEC efflux via MRP and BCRP,and may affect fluorescence-guided applications. Overall,the characterization of APC analog permeability across human BBB is significant for advancing future brain tumor-targeted applications of these agents.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Braam SR et al. (SEP 2008)
Stem cells (Dayton,Ohio) 26 9 2257--65
Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin.
Defined growth conditions are essential for many applications of human embryonic stem cells (hESC). Most defined media are presently used in combination with Matrigel,a partially defined extracellular matrix (ECM) extract from mouse sarcoma. Here,we defined ECM requirements of hESC by analyzing integrin expression and ECM production and determined integrin function using blocking antibodies. hESC expressed all major ECM proteins and corresponding integrins. We then systematically replaced Matrigel with defined medium supplements and ECM proteins. Cells attached efficiently to natural human vitronectin,fibronectin,and Matrigel but poorly to laminin + entactin and collagen IV. Integrin-blocking antibodies demonstrated that alphaVbeta5 integrins mediated adhesion to vitronectin,alpha5beta1 mediated adhesion to fibronectin,and alpha6beta1 mediated adhesion to laminin + entactin. Fibronectin in feeder cell-conditioned medium partially supported growth on all natural matrices,but in defined,nonconditioned medium only Matrigel or (natural and recombinant) vitronectin was effective. Recombinant vitronectin was the only defined functional alternative to Matrigel,supporting sustained self-renewal and pluripotency in three independent hESC lines.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Randrianarison-Huetz V et al. (APR 2010)
Blood 115 14 2784--95
Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage.
Growth factor independence-1B (Gfi-1B) is a transcriptional repressor essential for erythropoiesis and megakaryopoiesis. Targeted gene disruption of GFI1B in mice leads to embryonic lethality resulting from failure to produce definitive erythrocytes,hindering the study of Gfi-1B function in adult hematopoiesis. We here show that,in humans,Gfi-1B controls the development of erythrocytes and megakaryocytes by regulating the proliferation and differentiation of bipotent erythro-megakaryocytic progenitors. We further identify in this cell population the type III transforming growth factor-beta receptor gene,TGFBR3,as a direct target of Gfi-1B. Knockdown of Gfi-1B results in altered transforming growth factor-beta (TGF-beta) signaling as shown by the increase in Smad2 phosphorylation and its inability to associate to the transcription intermediary factor 1-gamma (TIF1-gamma). Because the Smad2/TIF1-gamma complex is known to specifically regulate erythroid differentiation,we propose that,by repressing TGF-beta type III receptor (TbetaRIotaII) expression,Gfi-1B favors the Smad2/TIF1-gamma interaction downstream of TGF-beta signaling,allowing immature progenitors to differentiate toward the erythroid lineage.
View Publication
产品类型:
产品号#:
09850
产品名:
Yang C-TT et al. (AUG 2014)
British Journal of Haematology 166 3 435--448
Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins.
Human induced pluripotent stem cells (hiPSCs),like embryonic stem cells,are under intense investigation for novel approaches to model disease and for regenerative therapies. Here,we describe the derivation and characterization of hiPSCs from a variety of sources and show that,irrespective of origin or method of reprogramming,hiPSCs can be differentiated on OP9 stroma towards a multi-lineage haemo-endothelial progenitor that can contribute to CD144(+) endothelium,CD235a(+) erythrocytes (myeloid lineage) and CD19(+) B lymphocytes (lymphoid lineage). Within the erythroblast lineage,we were able to demonstrate by single cell analysis (flow cytometry),that hiPSC-derived erythroblasts express alpha globin as previously described,and that a sub-population of these erythroblasts also express haemoglobin F (HbF),indicative of fetal definitive erythropoiesis. More notably however,we were able to demonstrate that a small sub-fraction of HbF positive erythroblasts co-expressed HbA in a highly heterogeneous manner,but analogous to cord blood-derived erythroblasts when cultured using similar methods. Moreover,the HbA expressing erythroblast population could be greatly enhanced (44textperiodcentered0 ± 6textperiodcentered04%) when a defined serum-free approach was employed to isolate a CD31(+) CD45(+) erythro-myeloid progenitor. These findings demonstrate that hiPSCs may represent a useful alternative to standard sources of erythrocytes (RBCs) for future applications in transfusion medicine.
View Publication