Abdelwahab SF et al. (DEC 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 25 15006--10
HIV-1-suppressive factors are secreted by CD4+ T cells during primary immune responses.
CD4+ T cells are required for immunity against many viral infections,including HIV-1 where a positive correlation has been observed between strong recall responses and low HIV-1 viral loads. Some HIV-1-specific CD4+ T cells are preferentially infected with HIV-1,whereas others escape infection by unknown mechanisms. One possibility is that some CD4+ T cells are protected from infection by the secretion of soluble HIV-suppressive factors,although it is not known whether these factors are produced during primary antigen-specific responses. Here,we show that soluble suppressive factors are produced against CXCR4 and CCR5 isolates of HIV-1 during the primary immune response of human CD4+ T cells. This activity requires antigenic stimulation of naïve CD4+ T cells. One anti-CXCR4 factor is macrophage-derived chemokine (chemokine ligand 22,CCL22),and anti-CCR5 factors include macrophage inflammatory protein-1 alpha (CCL3),macrophage inflammatory protein-1 beta (CCL4),and RANTES (regulated upon activation of normal T cells expressed and secreted) (CCL5). Intracellular staining confirms that CD3+CD4+ T cells are the source of the prototype HIV-1-inhibiting chemokines CCL22 and CCL4. These results show that CD4+ T cells secrete an evolving HIV-1-suppressive activity during the primary immune response and that this activity is comprised primarily of CC chemokines. The data also suggest that production of such factors should be considered in the design of vaccines against HIV-1 and as a mechanism whereby the host can control infections with this virus.
View Publication
产品类型:
产品号#:
09500
09600
09650
19155
19155RF
产品名:
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
Valenti MT et al. (DEC 2008)
Bone 43 6 1084--92
Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells.
MSCs are known to have an extensive proliferative potential and ability to differentiate in various cell types. Osteoblastic differentiation from mesenchymal progenitor cells is an important step of bone formation,though the pattern of gene expression during differentiation is not yet well understood. Here,to investigate the possibility to obtain a model for in vitro bone differentiation using mesenchymal stem cells (hMSCs) from human subjects non-invasively,we developed a method to obtain hMSCs-like cells from peripheral blood by a two step method that included an enrichment of mononuclear cells followed by depletion of unwanted cells. Using these cells,we analyzed the expression of transcription factor genes (runt-related transcription factor 2 (RUNX2) and osterix (SP7)) and bone related genes (osteopontin (SPP1),osteonectin (SPARC) and collagen,type I,alpha 1 (COLIA1)) during osteoblastic differentiation. Our results demonstrated that hMSCs can be obtained from peripheral blood and that they are able to generate CFU-F and to differentiate in osteoblast and adipocyte; in this study,we also identified a possible gene expression timing during osteoblastic differentiation that provided a powerful tool to study bone physiology.
View Publication
产品类型:
产品号#:
15128
15168
产品名:
RosetteSep™人间充质干细胞富集抗体混合物
RosetteSep™人间充质干细胞富集抗体混合物
Thatava T et al. (JAN 2013)
Molecular therapy : the journal of the American Society of Gene Therapy 21 1 228--239
Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells.
Nuclear reprogramming of adult somatic tissue enables embryo-independent generation of autologous,patient-specific induced pluripotent stem (iPS) cells. Exploiting this emergent regenerative platform for individualized medicine applications requires the establishment of bioequivalence criteria across derived pluripotent lines and lineage-specified derivatives. Here,from individual patients with type 1 diabetes (T1D) multiple human iPS clones were produced and prospectively screened using a battery of developmental markers to assess respective differentiation propensity and proficiency in yielding functional insulin (INS)-producing progeny. Global gene expression profiles,pluripotency expression patterns,and the capacity to differentiate into SOX17- and FOXA2-positive definitive endoderm (DE)-like cells were comparable among individual iPS clones. However,notable intrapatient variation was evident upon further guided differentiation into HNF4α- and HNF1β-expressing primitive gut tube,and INS- and glucagon (GCG)-expressing islet-like cells. Differential dynamics of pluripotency-associated genes and pancreatic lineage-specifying genes underlined clonal variance. Successful generation of glucose-responsive INS-producing cells required silencing of stemness programs as well as the induction of stage-specific pancreatic transcription factors. Thus,comprehensive fingerprinting of individual clones is mandatory to secure homogenous pools amenable for diagnostic and therapeutic applications of iPS cells from patients with T1D.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lumelsky N et al. (MAY 2001)
Science (New York,N.Y.) 292 5520 1389--94
Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.
Although the source of embryonic stem (ES) cells presents ethical concerns,their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas,insulin is produced and secreted by specialized structures,islets of Langerhans. Diabetes,which affects 16 million people in the United States,results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice,the insulin-producing cells undergo rapid vascularization and maintain a clustered,islet-like organization.
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
Marchetto MC BH et al. (JUL 2016)
Molecular psychiatry Mol Psychiatry.
Altered proliferation and networks in neural cells derived from idiopathic autistic individuals
Autism spectrum disorders (ASD) are common,complex and heterogeneous neurodevelopmental disorders. Cellular and molecular mechanisms responsible for ASD pathogenesis have been proposed based on genetic studies,brain pathology and imaging,but a major impediment to testing ASD hypotheses is the lack of human cell models. Here,we reprogrammed fibroblasts to generate induced pluripotent stem cells,neural progenitor cells (NPCs) and neurons from ASD individuals with early brain overgrowth and non-ASD controls with normal brain size. ASD-derived NPCs display increased cell proliferation because of dysregulation of a β-catenin/BRN2 transcriptional cascade. ASD-derived neurons display abnormal neurogenesis and reduced synaptogenesis leading to functional defects in neuronal networks. Interestingly,defects in neuronal networks could be rescued by insulin growth factor 1 (IGF-1),a drug that is currently in clinical trials for ASD. This work demonstrates that selection of ASD subjects based on endophenotypes unraveled biologically relevant pathway disruption and revealed a potential cellular mechanism for the therapeutic effect of IGF-1
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Rivera T et al. (JAN 2017)
Nature structural & molecular biology 24 1 30--39
A balance between elongation and trimming regulates telomere stability in stem cells.
Telomere length maintenance ensures self-renewal of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs); however,the mechanisms governing telomere length homeostasis in these cell types are unclear. Here,we report that telomere length is determined by the balance between telomere elongation,which is mediated by telomerase,and telomere trimming,which is controlled by XRCC3 and Nbs1,homologous recombination proteins that generate single-stranded C-rich telomeric DNA and double-stranded telomeric circular DNA (T-circles),respectively. We found that reprogramming of differentiated cells induces T-circle and single-stranded C-rich telomeric DNA accumulation,indicating the activation of telomere trimming pathways that compensate telomerase-dependent telomere elongation in hiPSCs. Excessive telomere elongation compromises telomere stability and promotes the formation of partially single-stranded telomeric DNA circles (C-circles) in hESCs,suggesting heightened sensitivity of stem cells to replication stress at overly long telomeres. Thus,tight control of telomere length homeostasis is essential to maintain telomere stability in hESCs.
View Publication
Ovchinnikov DA et al. (JUL 2012)
World journal of stem cells 4 7 71--9
Generation of a human embryonic stem cell line stably expressing high levels of the fluorescent protein mCherry.
AIM: The generation and characterization of a human embryonic stem cell (hESC) line stably expressing red fluorescent mCherry protein.backslashnbackslashnMETHODS: Lentiviral transduction of a ubiquitously-expressed human EF-1α promoter driven mCherry transgene was performed in MEL2 hESC. Red fluore-scence was assessed by immunofluorescence and flow cytometry. Pluripotency of stably transduced hESC was determined by immunofluorescent pluripotency marker expression,flow cytometry,teratoma assays and embryoid body-based differentiation followed by reverse transcriptase-polymerase chain reaction. Quantification of cell motility and survival was performed with time lapse microscopy.backslashnbackslashnRESULTS: Constitutively fluorescently-labeled hESCs are useful tools for facile in vitro and in vivo tracking of survival,motility and cell spreading on various surfaces before and after differentiation. Here we describe the generation and characterization of a hESC line (MEL2) stably expressing red fluorescent protein,mCherry. This line was generated by random integration of a fluorescent protein-expressing cassette,driven by the ubiquitously-expressed human EF-1α promoter. Stably transfected MEL2-mCherry hESC were shown to express pluripotency markers in the nucleus (POU5F1/OCT4,NANOG and SOX2) and on the cell surface (SSEA4,TRA1-60 and TG30/CD9) and were shown to maintain a normal karyotype in long-term (for at least 35 passages) culture. MEL2-mCherry hESC further readily differentiated into representative cell types of the three germ layers in embryoid body and teratoma based assays and,importantly,maintained robust mCherry expression throughout differentiation. The cell line was next adapted to single-cell passaging,rendering it compatible with numerous bioengineering applications such as measurement of cell motility and cell spreading on various protein modified surfaces,quantification of cell attachment to nanoparticles and rapid estimation of cell survival.backslashnbackslashnCONCLUSION: The MEL2-mCherry hESC line conforms to the criteria of bona fide pluripotent stem cells and maintains red fluorescence throughout differentiation,making it a useful tool for bioengineering and in vivo tracking experiments.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Dye BR et al. (SEP 2016)
eLife 5
A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids.
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro,and become more adult-like in their structure,cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al.,2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment,long-term survival,and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue,we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue,resulting in airway-like structures that were remarkably similar to the native adult human lung.
View Publication
Trilck et al. ( 2013)
Orphanet journal of rare diseases 8 144
Niemann-Pick type C1 patient-specific induced pluripotent stem cells display disease specific hallmarks.
BACKGROUND: Niemann-Pick type C1 disease (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. In this lysosomal storage disorder the intracellular transport and sequestration of several lipids like cholesterol is severely impaired,resulting in an accumulation of lipids in late endosomes and lysosomes. The neurological manifestation of the disease is caused by dysfunction and cell death in the central nervous system. Several animal models were used to analyze the impaired pathways. However,the underlying pathogenic mechanisms are still not completely understood and the genetic variability in humans cannot be reflected in these models. Therefore,a human model using patient-specific induced pluripotent stem cells provides a promising approach. METHODS: We reprogrammed human fibroblasts from a NPC1 patient and a healthy control by retroviral transduction with Oct4,Klf4,Sox2 and c-Myc. The obtained human induced pluripotent stem cells (hiPSCs) were characterized by immunocytochemical analyses. Neural progenitor cells were generated and patch clamp recordings were performed for a functional analysis of derived neuronal cells. Filipin stainings and the Amplex Red assay were used to demonstrate and quantify cholesterol accumulation. RESULTS: The hiPSCs expressed different stem cell markers,e.g. Nanog,Tra-1-81 and SSEA4. Using the embryoid body assay,the cells were differentiated in cells of all three germ layers and induced teratoma in immunodeficient mice,demonstrating their pluripotency. In addition,neural progenitor cells were derived and differentiated into functional neuronal cells. Patch clamp recordings revealed voltage dependent channels,spontaneous action potentials and postsynaptic currents. The accumulation of cholesterol in different tissues is the main hallmark of NPC1. In this study we found an accumulation of cholesterol in fibroblasts of a NPC1 patient,derived hiPSCs,and neural progenitor cells,but not in cells derived from fibroblasts of a healthy individual. These findings were quantified by the Amplex Red assay,demonstrating a significantly elevated cholesterol level in cells derived from fibroblasts of a NPC1 patient. CONCLUSIONS: We generated a neuronal model based on induced pluripotent stem cells derived from patient fibroblasts,providing a human in vitro model to study the pathogenic mechanisms of NPC1 disease.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Grajales L et al. (APR 2010)
Journal of molecular and cellular cardiology 48 4 735--45
Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) can be induced to differentiate into myogenic cells. Despite their potential,previous studies have not been successful in producing a high percentage of cardiac-like cells with a muscle phenotype. We hypothesized that cardiac lineage development in BM-MSC is related to cell passage,culture milieu,and enrichment for specific cell subtypes before and during differentiation. Our study demonstrated that Lin(-) BM-MSC at an intermediate passage (IP; P8-P12) expressed cardiac troponin T (cTnT) after 21 days in culture. Cardiac TnT expression was similar whether IP cells were differentiated in media containing 5-azacytidine+2% FBS (AZA; 14%) or 2% FBS alone (LS; 12%) and both were significantly higher than AZA+5% FBS. This expression was potentiated by first enriching for CD117/Sca-1 cells followed by differentiation (AZA,39% and LS,28%). A second sequential enrichment for the dihydropyridine receptor subunit alpha2delta1 (DHPR-alpha2) resulted in cardiac TnT expressed in 54% of cultured cells compared to 28% of cells after CD117/Sca-1(+) enrichment. Cells enriched for CD117/Sca-1 and subjected to differentiation displayed spontaneous intracellular Ca(2+) transients with an increase in transient frequency and a 60% decrease in the transient duration amplitude between days 14 and 29. In conclusion,IP CD117/Sca-1(+) murine BM-MSCs display robust cardiac muscle lineage development that can be induced independent of AZA but is diminished under higher serum concentrations. Furthermore,temporal changes in calcium kinetics commensurate with increased cTnT expression suggest progressive maturation of a cardiac muscle lineage. Enrichment with CD117/Sca-1 to establish lineage commitment followed by DHPR-alpha2 in lineage developing cells may enhance the therapeutic potential of these cells for transplantation.
View Publication