Multiscale computational models for optogenetic control of cardiac function
The ability to stimulate mammalian cells with light has significantly changed our understanding of electrically excitable tissues in health and disease,paving the way toward various novel therapeutic applications. Here,we demonstrate the potential of optogenetic control in cardiac cells using a hybrid experimental/computational technique. Experimentally,we introduced channelrhodopsin-2 into undifferentiated human embryonic stem cells via a lentiviral vector,and sorted and expanded the genetically engineered cells. Via directed differentiation,we created channelrhodopsin-expressing cardiomyocytes,which we subjected to optical stimulation. To quantify the impact of photostimulation,we assessed electrical,biochemical,and mechanical signals using patch-clamping,multielectrode array recordings,and video microscopy. Computationally,we introduced channelrhodopsin-2 into a classic autorhythmic cardiac cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation,the channel opens and allows sodium ions to enter the cell,inducing a fast upstroke of the transmembrane potential. We calibrated the channelrhodopsin-expressing cell model using single action potential readings for different photostimulation amplitudes,pulse widths,and frequencies. To illustrate the potential of the proposed approach,we virtually injected channelrhodopsin-expressing cells into different locations of a human heart,and explored its activation sequences upon optical stimulation. Our experimentally calibrated computational toolbox allows us to virtually probe landscapes of process parameters,and identify optimal photostimulation sequences toward pacing hearts with light. ?? 2011 Biophysical Society.
View Publication
Chen H et al. (DEC 2015)
Biological research 48 1 59
Functional disruption of human leukocyte antigen II in human embryonic stem cell.
BACKGROUND Theoretically human embryonic stem cells (hESCs) have the capacity to self-renew and differentiate into all human cell types. Therefore,the greatest promise of hESCs-based therapy is to replace the damaged tissues of patients suffering from traumatic or degenerative diseases by the exact same type of cells derived from hESCs. Allograft immune rejection is one of the obstacles for hESCs-based clinical applications. Human leukocyte antigen (HLA) II leads to CD4(+) T cells-mediated allograft rejection. Hence,we focus on optimizing hESCs for clinic application through gene modification. RESULTS Transcription activator-like effector nucleases (TALENs) were used to target MHC class II transactivator (CIITA) in hESCs efficiently. CIITA (-/-) hESCs did not show any difference in the differentiation potential and self-renewal capacity. Dendritic cells (DCs) derived from CIITA (-/-) hESCs expressed CD83 and CD86 but without the constitutive HLA II. Fibroblasts derived from CIITA (-/-) hESCs were powerless in IFN-$\$ expression of HLA II. CONCLUSION We generated HLA II defected hESCs via deleting CIITA,a master regulator of constitutive and IFN-$\$ expression of HLA II genes. CIITA (-/-) hESCs can differentiate into tissue cells with non-HLA II expression. It's promising that CIITA (-/-) hESCs-derived cells could be used in cell therapy (e.g.,T cells and DCs) and escape the attack of receptors' CD4(+) T cells,which are the main effector cells of cellular immunity in allograft.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Kuang S et al. (JAN 2006)
The Journal of cell biology 172 1 103--13
Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis.
We assessed viable Pax7(-/-) mice in 129Sv/J background and observed reduced growth and marked muscle wasting together with a complete absence of functional satellite cells. Acute injury resulted in an extreme deficit in muscle regeneration. However,a small number of regenerated myofibers were detected,suggesting the presence of residual myogenic cells in Pax7-deficient muscle. Rare Pax3(+)/MyoD+ myoblasts were recovered from Pax7(-/-) muscle homogenates and cultures of myofiber bundles but not from single myofibers free of interstitial tissues. Finally,we identified Pax3+ cells in the muscle interstitial environment and demonstrated that they coexpressed MyoD during regeneration. Sublaminar satellite cells in hind limb muscle did not express detectable levels of Pax3 protein or messenger RNA. Therefore,we conclude that interstitial Pax3+ cells represent a novel myogenic population that is distinct from the sublaminar satellite cell lineage and that Pax7 is essential for the formation of functional myogenic progenitors from sublaminar satellite cells.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Kurtzberg LS et al. (MAY 2011)
Clinical cancer research : an official journal of the American Association for Cancer Research 17 9 2777--87
Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment.
PURPOSE: Genz-644282 [8,9-dimethoxy-5-(2-N-methylaminoethyl)-2,3-methylenedioxy-5H-dibenzo[c,h][1,6]naphthyridin-6-one] has emerged as a promising candidate for antitumor agents. This report describes the bone marrow colony-forming unit,granulocyte macrophage (CFU-GM) and tumor cell CFU activity of topoisomerase I (Top1) inhibitors,such as Genz-644282,topotecan,irinotecan/SN-38,and ARC-111,and examines their activity in several human tumor xenograft models. EXPERIMENTAL DESIGN: Colony-forming assays were conducted with mouse and human bone marrow and eight human tumor cell lines. In addition,29 human tumor cell lines representing a range of histology and potential resistance mechanisms were assayed for sensitivity to Genz-644282 in a 72-hour exposure assay. The efficacy of Genz-644282 was compared with standard anticancer drugs (i.e.,irinotecan,docetaxel,and dacarbazine) in human tumor xenografts of colon cancer,renal cell carcinoma,non-small cell lung cancer,and melanoma. RESULTS: Human bone marrow CFU-GM was more sensitive to the Top1 inhibitors than was mouse bone marrow CFU-GM. The ratio of mouse to human IC(90) values was more than 10 for the camptothecins and less than 10 for Genz-644282,which had more potency as a cytotoxic agent toward human tumor cells in culture than the camptothecins in the colony-forming and 72-hour proliferation assays. Genz-644282 has superior or equal antitumor activity in the human tumor xenografts than the standard drug comparators. CONCLUSIONS: On the basis of preclinical activity and safety,Genz-644282 was selected for development and is currently undergoing phase 1 clinical trial.
View Publication
产品类型:
产品号#:
03434
03444
04035
84534
84544
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
MethoCult™H4035 Optimum无EPO
Cossette SM et al. (JAN 2015)
Biology Open 4 1 48--61
Sucrose non-fermenting related kinase enzyme is essential for cardiac metabolism
In this study,we have identified a novel member of the AMPK family,namely Sucrose non-fermenting related kinase (Snrk),that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart,and brain,and in cell types such as endothelial cells,smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts,and die at postnatal day 0. Microarray analysis of embryonic day 17.5 Snrk hearts,and blood profile of neonates display defect in lipid metabolic pathways. SNRK knockdown CMs showed altered phospho-acetyl-coA carboxylase and phospho-AMPK levels similar to global and endothelial conditional KO mouse. Finally,adult cardiac conditional KO mouse displays severe cardiac functional defects and lethality. Our results suggest that Snrk is essential for maintaining cardiac metabolic homeostasis,and shows an autonomous role for SNRK during mammalian development.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lee YK et al. ( 2016)
1353 191--213
Generation and characterization of patient-specific iPSC model for cardiovascular disease
Advances in differentiation of cardiomyocytes from human induced pluripotent stem cell (hiPSC) were emerged as a tool for modeling of cardiovascular disease that recapitulates the phenotype for the purpose of drug screening,biomarker discovery,and testing of single-nucleotide polymorphism (SNP) as a modifier for disease stratification. Here,we describe the (1) retroviral reprogramming strategies in the generation of human iPSC,(2) methodology in characterization of iPSC in order to identify the stem cell clones with the best quality,and (3) protocol of cardiac differentiation by modulation of Wnt signaling and $\$-catenin pathway.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Kaplan IM et al. (MAR 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 5 2826--34
Deletion of tristetraprolin caused spontaneous reactive granulopoiesis by a non-cell-autonomous mechanism without disturbing long-term hematopoietic stem cell quiescence.
Tristetraprolin (TTP,Zfp36,Nup475,Tis11) dramatically reduces the stability of target mRNAs by binding to AU-rich elements in their 3' untranslated regions. Through this mechanism,TTP functions as a rheostatic,temporal regulator of gene expression. TTP knockout (KO) mice exhibit completely penetrant granulocytic hyperplasia. We have shown that the hematopoietic stem-progenitor cell compartment in TTP KO mice is also altered. Although no change was detected in long-term hematopoietic stem cell (HSC) frequency or function,as assayed by immunophenotypic markers or limiting dilution transplants,we observed increases in the frequencies and numbers of short-term HSCs,multipotent progenitors,and granulocyte-monocyte progenitors. This pattern is consistent with reactive granulopoiesis�
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Qin H et al. (MAR 2016)
Cell reports 14 10 2301--2312
YAP Induces Human Naive Pluripotency.
The human naive pluripotent stem cell (PSC) state,corresponding to a pre-implantation stage of development,has been difficult to capture and sustain in vitro. We report that the Hippo pathway effector YAP is nuclearly localized in the inner cell mass of human blastocysts. Overexpression of YAP in human embryonic stem cells (ESCs) and induced PSCs (iPSCs) promotes the generation of naive PSCs. Lysophosphatidic acid (LPA) can partially substitute for YAP to generate transgene-free human naive PSCs. YAP- or LPA-induced naive PSCs have a rapid clonal growth rate,a normal karyotype,the ability to form teratomas,transcriptional similarities to human pre-implantation embryos,reduced heterochromatin levels,and other hallmarks of the naive state. YAP/LPA act in part by suppressing differentiation-inducing effects of GSK3 inhibition. CRISPR/Cas9-generated YAP-/- cells have an impaired ability to form colonies in naive but not primed conditions. These results uncover an unexpected role for YAP in the human naive state,with implications for early human embryology.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
挂图
Neural Stem Cells
Overview of the types of NSCs and their potential use as therapeutic agents for disease