von Vietinghoff S et al. (MAY 2007)
Blood 109 10 4487--93
NB1 mediates surface expression of the ANCA antigen proteinase 3 on human neutrophils.
Antineutrophil cytoplasmic antibodies (ANCAs) with specificity for proteinase 3 (PR3) are central to a form of ANCA-associated vasculitis. Membrane PR3 (mPR3) is expressed only on a subset of neutrophils. The aim of this study was to determine the mechanism of PR3 surface expression on human neutrophils. Neutrophils were isolated from patients and healthy controls,and hematopoietic stem cells from cord blood served as a model of neutrophil differentiation. Surface expression was analyzed by flow cytometry and confocal microscopy,and proteins were analyzed by Western blot experiments. Neutrophil subsets were separated by magnetic cell sorting. Transfection experiments were carried out in HEK293 and HL60 cell lines. Using neutrophils from healthy donors,patients with vasculitis,and neutrophilic differentiated stem cells we found that mPR3 display was restricted to cells expressing neutrophil glycoprotein NB1,a glycosylphosphatidylinositol (GPI)-linked surface receptor. mPR3 expression was decreased by enzymatic removal of GPI anchors from cell membranes and was absent in a patient with paroxysmal nocturnal hemoglobinuria. PR3 and NB1 coimmunoprecipitated from and colocalized on the neutrophil plasma membrane. Transfection with NB1 resulted in specific PR3 surface binding in different cell types. We conclude that PR3 membrane expression on neutrophils is mediated by the NB1 receptor.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Cantone I et al. (AUG 2016)
Nature communications 7 August 12354
Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming.
Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse,but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30-50%). After cell division,RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhong B et al. (MAY 2011)
Stem cells and development 20 5 795--807
Efficient generation of nonhuman primate induced pluripotent stem cells.
Induced pluripotent stem (iPS) cells have great potential for regenerative medicine and gene therapy. Thus far,iPS cells have typically been generated using integrating viral vectors expressing various reprogramming transcription factors; nonintegrating methods have been less effective and efficient. Because there is a significant risk of malignant transformation and cancer involved with the use of iPS cells,careful evaluation of transplanted iPS cells will be necessary in small and large animal studies before clinical application. Here,we have generated and characterized nonhuman primate iPS cells with the goal of evaluating iPS cell transplantation in a clinically relevant large animal model. We developed stable Phoenix-RD114-based packaging cell lines that produce OCT4,SOX2,c-MYC,and KLF4 (OSCK) expressing gammaretroviral vectors. Using these vectors in combination with small molecules,we were able to efficiently and reproducibly generate nonhuman primate iPS cells from pigtailed macaques (Macaca nemestrina). The established nonhuman primate iPS cells exhibited pluripotency and extensive self-renewal capacity. The facile and reproducible generation of nonhuman primate iPS cells using defined producer cells as a source of individual reprogramming factors should provide an important resource to optimize and evaluate iPS cell technology for studies involving stem cell biology and regenerative medicine.
View Publication
产品类型:
产品号#:
05860
05880
05850
05857
05870
05875
27100
27150
85850
85857
85870
85875
产品名:
35 mm培养皿
35 mm培养皿
mTeSR™1
mTeSR™1
Chan HYS et al. (AUG 2016)
Science China Life Sciences 59 8 811--824
Expression and reconstitution of the bioluminescent Ca2+ reporter aequorin in human embryonic stem cells, and exploration of the presence of functional IP3 and ryanodine receptors during the early stages of their differentiation into cardiomyocytes
In order to develop a novel method of visualizing possible Ca(2+) signaling during the early differentiation of hESCs into cardiomyocytes and avoid some of the inherent problems associated with using fluorescent reporters,we expressed the bioluminescent Ca(2+) reporter,apo-aequorin,in HES2 cells and then reconstituted active holo-aequorin by incubation with f-coelenterazine. The temporal nature of the Ca(2+) signals generated by the holo-f-aequorin-expressing HES2 cells during the earliest stages of differentiation into cardiomyocytes was then investigated. Our data show that no endogenous Ca(2+) transients (generated by release from intracellular stores) were detected in 1-12-day-old cardiospheres but transients were generated in cardiospheres following stimulation with KCl or CaCl2,indicating that holo-f-aequorin was functional in these cells. Furthermore,following the addition of exogenous ATP,an inositol trisphosphate receptor (IP3R) agonist,small Ca(2+) transients were generated from day 1 onward. That ATP was inducing Ca(2+) release from functional IP3Rs was demonstrated by treatment with 2-APB,a known IP3R antagonist. In contrast,following treatment with caffeine,a ryanodine receptor (RyR) agonist,a minimal Ca(2+) response was observed at day 8 of differentiation only. Thus,our data indicate that unlike RyRs,IP3Rs are present and continually functional at these early stages of cardiomyocyte differentiation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Sharma A and Wu JC (JAN 2013)
936 247--256
MicroRNA expression profiling of human-induced pluripotent and embryonic stem cells
Clinical implications of induced pluripotent stem (iPS) cell technology are enormous for personalized medicine. However,extensive use of viral approach for ectopic expression of reprogramming factors is a major hurdle in realization of its true potential. Non-viral methods for making iPS cells,although plausible,are impractical because of high cost. MicroRNAs are important cellular modulators that have been shown to rival transcription factors and are important players in embryonic development. We have generated distinct microRNA-omes" signature of iPS cells that remain in a near embryonic stem (ES) cell state and distinct from differentiated cells. Recent advances in the microRNA field and experimentally validated microRNAs warrant a review in experimental protocols for microRNA expression profile."
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Li J et al. (DEC 2015)
Biomedical microdevices 17 6 105
Fabrication of uniform-sized poly-ɛ-caprolactone microspheres and their applications in human embryonic stem cell culture.
The generation of liquefied poly-ɛ-caprolactone (PCL) droplets by means of a microfluidic device results in uniform-sized microspheres,which are validated as microcarriers for human embryonic stem cell culture. Formed droplet size and size distribution,as well as the resulting PCL microsphere size,are correlated with the viscosity and flow rate ratio of the dispersed (Q d) and continuous (Q c) phases. PCL in dichloromethane increases its viscosity with concentration and molecular weight. Higher viscosity and Q d/Q c lead to the formation of larger droplets,within two observed formation modes: dripping and jetting. At low viscosity of dispersed phase and Q d/Q c,the microfluidic device is operated in dripping mode,which generates droplets and microspheres with greater size uniformity. Solutions with lower molecular weight PCL have lower viscosity,resulting in a wider concentration range for the dripping mode. When coated with extracellular matrix (ECM) proteins,the fabricated PCL microspheres are demonstrated capable of supporting the expansion of human embryonic stem cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chen R-L et al. (APR 2010)
The Journal of biological chemistry 285 14 10189--97
Developmental silencing of human zeta-globin gene expression is mediated by the transcriptional repressor RREB1.
The mammalian embryonic zeta-globin genes,including that of humans,are expressed at the early embryonic stage and then switched off during erythroid development. This autonomous silencing of the zeta-globin gene transcription is probably regulated by the cooperative work of various protein-DNA and protein-protein complexes formed at the zeta-globin promoter and its upstream enhancer (HS-40). We present data here indicating that a protein-binding motif,ZF2,contributes to the repression of the HS-40-regulated human zeta-promoter activity in erythroid cell lines and in transgenic mice. Combined site-directed mutagenesis and EMSA suggest that repression of the human zeta-globin promoter is mediated through binding of the zinc finger factor RREB1 to ZF2. This model is further supported by the observation that human zeta-globin gene transcription is elevated in the human erythroid K562 cell line or the primary erythroid culture upon RNA interference (RNAi)(2) knockdown of RREB1 expression. These data together suggest that RREB1 is a putative repressor for the silencing of the mammalian zeta-globin genes during erythroid development. Because zeta-globin is a powerful inhibitor of HbS polymerization,our experiments have provided a foundation for therapeutic up-regulation of zeta-globin gene expression in patients with severe hemoglobinopathies.
View Publication
The ETS factor TEL2 is a hematopoietic oncoprotein.
TEL2/ETV7 is highly homologous to the ETS transcription factor TEL/ETV6,a frequent target of chromosome translocation in human leukemia. Although both proteins are transcriptional inhibitors binding similar DNA recognition sequences,they have opposite biologic effects: TEL inhibits proliferation while TEL2 promotes it. In addition,forced expression of TEL2 but not TEL blocks vitamin D3-induced differentiation of U937 and HL60 myeloid cells. TEL2 is expressed in the hematopoietic system,and its expression is up-regulated in bone marrow samples of some patients with leukemia,suggesting a role in oncogenesis. Recently we also showed that TEL2 cooperates with Myc in B lymphomagenesis in mice. Here we show that forced expression of TEL2 alone in mouse bone marrow causes a myeloproliferative disease with a long latency period but with high penetrance. This suggested that secondary mutations are necessary for disease development. Treating mice receiving transplants with TEL2-expressing bone marrow with the chemical carcinogen N-ethyl-N-nitrosourea (ENU) resulted in significantly accelerated disease onset. Although the mice developed a GFP-positive myeloid disease with 30% of the mice showing elevated white blood counts,they all died of T-cell lymphoma,which was GFP negative. Together our data identify TEL2 as a bona fide oncogene,but leukemic transformation is dependent on secondary mutations.
View Publication
产品类型:
产品号#:
03434
03444
05350
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Sundberg M et al. (AUG 2013)
Stem Cells 31 8 1548--1562
Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons
The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for preclinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate iPSC (PiPSC)-derived DA neurons. According to our results,NCAM(+) /CD29(low) sorting enriched VM DA neurons from pluripotent stem cell-derived neural cell populations. NCAM(+) /CD29(low) DA neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2,LMX1A,TH,GIRK2,PITX3,EN1,NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM(+) /CD29(low) DA neurons were able to restore motor function of 6-hydroxydopamine (6-OHDA) lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue,with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation,the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chapman AG et al. (DEC 2014)
BMC genetics 15 1 89
Differentially methylated CpG island within human XIST mediates alternative P2 transcription and YY1 binding.
BackgroundX-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males. While most genes are silenced on the inactive X chromosome,the gene for the long non-coding RNA XIST is silenced on the active X chromosome and expressed from the inactive X chromosome with which the XIST RNA associates,triggering silencing of the chromosome. In mouse,an alternative Xist promoter,P2 is also the site of YY1 binding,which has been shown to serve as a tether between the Xist RNA and the DNA of the chromosome. In humans there are many differences from the initial events of mouse Xist activation,including absence of a functional antisense regulator Tsix,and absence of strictly paternal inactivation in extraembryonic tissues,prompting us to examine regulatory regions for the human XIST gene.ResultsWe demonstrate that the female-specific DNase hypersensitivity site within XIST is specific to the inactive X chromosome and correlates with transcription from an internal P2 promoter. P2 is located within a CpG island that is differentially methylated between males and females and overlaps conserved YY1 binding sites that are only bound on the inactive X chromosome where the sites are unmethylated. However,YY1 binding is insufficient to drive P2 expression or establish the DHS,which may require a development-specific factor. Furthermore,reduction of YY1 reduces XIST transcription in addition to causing delocalization of XIST.ConclusionsThe differentially methylated DNase hypersensitive site within XIST marks the location of an alternative promoter,P2,that generates a transcript of unknown function as it lacks the A repeats that are critical for silencing. In addition,this region binds YY1 on the unmethylated inactive X chromosome,and depletion of YY1 untethers the XIST RNA as well as decreasing transcription of XIST.
View Publication