Diamandis P et al. ( 2007)
Nature chemical biology 3 5 268--273
Chemical genetics reveals a complex functional ground state of neural stem cells.
The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain holds promise for the treatment of neurological diseases and has yielded new insight into brain cancer. However,the complete repertoire of signaling pathways that governs the proliferation and self-renewal of NSCs,which we refer to as the 'ground state',remains largely uncharacterized. Although the candidate gene approach has uncovered vital pathways in NSC biology,so far only a few highly studied pathways have been investigated. Based on the intimate relationship between NSC self-renewal and neurosphere proliferation,we undertook a chemical genetic screen for inhibitors of neurosphere proliferation in order to probe the operational circuitry of the NSC. The screen recovered small molecules known to affect neurotransmission pathways previously thought to operate primarily in the mature central nervous system; these compounds also had potent inhibitory effects on cultures enriched for brain cancer stem cells. These results suggest that clinically approved neuromodulators may remodel the mature central nervous system and find application in the treatment of brain cancer.
View Publication
产品类型:
产品号#:
73542
73544
产品名:
WHI-P131
文献
Brambrink T et al. (FEB 2008)
Cell stem cell 2 2 151--9
Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells.
Pluripotency can be induced in differentiated murine and human cells by retroviral transduction of Oct4,Sox2,Klf4,and c-Myc. We have devised a reprogramming strategy in which these four transcription factors are expressed from doxycycline (dox)-inducible lentiviral vectors. Using these inducible constructs,we derived induced pluripotent stem (iPS) cells from mouse embryonic fibroblasts (MEFs) and found that transgene silencing is a prerequisite for normal cell differentiation. We have analyzed the timing of known pluripotency marker activation during mouse iPS cell derivation and observed that alkaline phosphatase (AP) was activated first,followed by stage-specific embryonic antigen 1 (SSEA1). Expression of Nanog and the endogenous Oct4 gene,marking fully reprogrammed cells,was only observed late in the process. Importantly,the virally transduced cDNAs needed to be expressed for at least 12 days in order to generate iPS cells. Our results are a step toward understanding some of the molecular events governing epigenetic reprogramming.
View Publication
产品类型:
产品号#:
72742
产品名:
Doxycycline (Hyclate)
文献
Vasiliou V et al. (FEB 2013)
Chemico-biological interactions 202 1-3 2--10
Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells.
The aldehyde dehydrogenase (ALDH) superfamily is composed of nicotinamide adenine dinucleotide (phosphate) (NAD(P)(+))-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. To date,24 ALDH gene families have been identified in the eukaryotic genome. In addition to aldehyde metabolizing capacity,ALDHs have additional catalytic (e.g. esterase and reductase) and non-catalytic activities. The latter include functioning as structural elements in the eye (crystallins) and as binding molecules to endobiotics and xenobiotics. Mutations in human ALDH genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Most recently ALDH polymorphisms have been associated with gout and osteoporosis. Aldehyde dehydrogenase enzymes also play important roles in embryogenesis and development,neurotransmission,oxidative stress and cancer. This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
文献
Sigova Aa et al. (FEB 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 8 2876--81
Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells.
Many long noncoding RNA (lncRNA) species have been identified in mammalian cells,but the genomic origin and regulation of these molecules in individual cell types is poorly understood. We have generated catalogs of lncRNA species expressed in human and murine embryonic stem cells and mapped their genomic origin. A surprisingly large fraction of these transcripts (textgreater60%) originate from divergent transcription at promoters of active protein-coding genes. The divergently transcribed lncRNA/mRNA gene pairs exhibit coordinated changes in transcription when embryonic stem cells are differentiated into endoderm. Our results reveal that transcription of most lncRNA genes is coordinated with transcription of protein-coding genes.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ladner MB et al. (SEP 1988)
Proceedings of the National Academy of Sciences of the United States of America 85 18 6706--10
cDNA cloning and expression of murine macrophage colony-stimulating factor from L929 cells.
A 4-kilobase and a 2-kilobase cDNA clone encoding a murine macrophage colony-stimulating factor have been isolated. Except for 2 amino acid residue differences,these two clones encode the same 520 amino acid residue protein,which is preceded by a 32-amino acid residue signal peptide. The two clones,whose molecular masses correspond to the two transcripts observed in murine L929 fibroblasts,contain 3' untranslated regions that are markedly different in sequence and length. Both clones can be expressed in COS cells and the recombinant protein is active in a mouse bone marrow colony assay.
View Publication
产品类型:
产品号#:
产品名:
文献
Reeves SR et al. (SEP 2014)
The Journal of allergy and clinical immunology 134 3 663----670.e1
BACKGROUND: Airway remodeling might explain lung function decline among asthmatic children. Extracellular matrix (ECM) deposition by human lung fibroblasts (HLFs) is implicated in airway remodeling. Airway epithelial cell (AEC) signaling might regulate HLF ECM expression. OBJECTIVES: We sought to determine whether AECs from asthmatic children differentially regulate HLF expression of ECM constituents. METHODS: Primary AECs were obtained from well-characterized atopic asthmatic (n = 10) and healthy (n = 10) children intubated during anesthesia for an elective surgical procedure. AECs were differentiated at an air-liquid interface for 3 weeks and then cocultured with HLFs from a healthy child for 96 hours. Collagen I (COL1A1),collagen III (COL3A1),hyaluronan synthase (HAS) 2,and fibronectin expression by HLFs and prostaglandin E2 synthase (PGE2S) expression by AECs were assessed by using RT-PCR. TGF-$$1 and TGF-$$2 concentrations in media were measured by using ELISA. RESULTS: COL1A1 and COL3A1 expression by HLFs cocultured with AECs from asthmatic patients was greater than that by HLFs cocultured with AECs from healthy subjects (2.2-fold,P textless .02; 10.8-fold,P textless .02). HAS2 expression by HLFs cocultured with AECs from asthmatic patients was 2.5-fold higher than that by HLFs cocultured with AECs from healthy subjects (P textless .002). Fibronectin expression by HLFs cocultured with AECs from asthmatic patients was significantly greater than that by HLFs alone. TGF-$$2 activity was increased in cocultures of HLFs with AECs from asthmatic patients (P textless .05),whereas PGES2 was downregulated in AEC-HLF cocultures (2.2-fold,P textless .006). CONCLUSIONS: HLFs cocultured with AECs from asthmatic patients showed differential expression of the ECM constituents COL1A1 and COL3A1 and HAS2 compared with HLFs cocultured with AECs from healthy subjects. These findings support a role for altered ECM production in asthmatic airway remodeling,possibly regulated by unbalanced AEC signaling.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
文献
Tamaki T et al. (MAY 2002)
The Journal of cell biology 157 4 571--7
Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle.
Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression,and were sorted as a CD34+ and CD45- fraction. Cells in this fraction were approximately 94% positive for Sca-1,and mostly negative (textless3% positive) for CD14,31,49,144,c-kit,and FLK-1. The CD34+/45- cells formed colonies in clonal cell cultures and colony-forming units displayed the potential to differentiate into adipocytes,endothelial,and myogenic cells. The CD34+/45- cells fully differentiated into vascular endothelial cells and skeletal muscle fibers in vivo after transplantation. Immediately after sorting,CD34+/45- cells expressed only c-met mRNA,and did not express any other myogenic cell-related markers such as MyoD,myf-5,myf-6,myogenin,M-cadherin,Pax-3,and Pax-7. However,after 3 d of culture,these cells expressed mRNA for all myogenic markers. CD34+/45- cells were distinct from satellite cells,as they expressed Bcrp1/ABCG2 gene mRNA (Zhou et al.,2001). These findings suggest that myo-endothelial progenitors reside in the interstitial spaces of mammalian skeletal muscles,and that they can potentially contribute to postnatal skeletal muscle growth.
View Publication
产品类型:
产品号#:
04034
04044
产品名:
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
文献
Kootstra NA et al. (FEB 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 3 1298--303
Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells.
HIV-1 replication in simian cells is restricted at an early postentry step because of the presence of an inhibitory cellular factor. This block reduces the usefulness of HIV-1-based lentiviral vectors in primate animal models. Here,we demonstrate that substitution of the cyclophilin A (CyPA) binding region in the capsid of an HIV-1-based lentiviral vector (LV) with that of the macrophage tropic HIV-1 Ba-L resulted in a vector that was resistant to the inhibitory effect and efficiently transduced simian cells. Notably,the chimeric gag LV efficiently transduced primary simian hematopoietic progenitor cells,a critical cellular target in gene therapy. The alterations in the CyPA binding region did not affect CyPA incorporation; however,transduction by the gag chimeric LV seemed to be relatively insensitive to cyclosporin A,indicating that it does not require CyPA for early postentry steps. In dual infection experiments,the gag chimeric LV failed to remove the block to transduction of the WT LV,suggesting that the gag chimeric LV did not saturate the inhibitory simian cellular factor. These data suggest that the CyPA binding region of capsid contains a viral determinant involved in the postentry restriction of HIV-1-based lentiviral vectors. Overall,the findings demonstrate that the host range of HIV-1-based LV can be altered by modifications in the packaging construct.
View Publication
产品类型:
产品号#:
05150
09500
09600
09650
产品名:
MyeloCult™H5100
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
文献
Xue D et al. (NOV 2016)
Journal of immunology (Baltimore,Md. : 1950)
Semaphorin 4C Protects against Allergic Inflammation: Requirement of Regulatory CD138+ Plasma Cells.
The regulatory properties of B cells have been studied in autoimmune diseases; however,their role in allergic diseases is poorly understood. We demonstrate that Semaphorin 4C (Sema4C),an axonal guidance molecule,plays a crucial role in B cell regulatory function. Mice deficient in Sema4C exhibited increased airway inflammation after allergen exposure,with massive eosinophilic lung infiltrates and increased Th2 cytokines. This phenotype was reproduced by mixed bone marrow chimeric mice with Sema4C deficient only in B cells,indicating that B lymphocytes were the key cells affected by the absence of Sema4C expression in allergic inflammation. We determined that Sema4C-deficient CD19(+)CD138(+) cells exhibited decreased IL-10 and increased IL-4 expression in vivo and in vitro. Adoptive transfer of Sema4c(-/-) CD19(+)CD138(+) cells induced marked pulmonary inflammation,eosinophilia,and increased bronchoalveolar lavage fluid IL-4 and IL-5,whereas adoptive transfer of wild-type CD19(+)CD138(+)IL-10(+) cells dramatically decreased allergic airway inflammation in wild-type and Sema4c(-/-) mice. This study identifies a novel pathway by which Th2-mediated immune responses are regulated. It highlights the importance of plasma cells as regulatory cells in allergic inflammation and suggests that CD138(+) B cells contribute to cytokine balance and are important for maintenance of immune homeostasis in allergic airways disease. Furthermore,we demonstrate that Sema4C is critical for optimal regulatory cytokine production in CD138(+) B cells.
View Publication
Hasegawa K et al. (DEC 2011)
Stem Cells Translational Medicine 1 1 18--28
Wnt Signaling Orchestration with a Small Molecule DYRK Inhibitor Provides Long-Term Xeno-Free Human Pluripotent Cell Expansion
An optimal culture system for human pluripotent stem cells should be fully defined and free of animal components. To date,most xeno-free culture systems require human feeder cells and/or highly complicated culture media that contain activators of the fibroblast growth factor (FGF) and transforming growth factor-β (TGFβ) signaling pathways,and none provide for replacement of FGF/TGFβ ligands with chemical compounds. The Wnt/β-catenin signaling pathway plays an important role in mouse embryonic stem cells in leukemia inhibitory factor-independent culture; however,the role of Wnt/β-catenin signaling in human pluripotent stem cell is still poorly understood and controversial because of the dual role of Wnts in proliferation and differentiation. Building on our previous investigations of small molecules modulating Wnt/β-catenin signaling in mouse embryonic stem cells,we identified a compound,ID-8,that could support Wnt-induced human embryonic stem cell proliferation and survival without differentiation. Dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) is the target of the small molecule ID-8. Its role in human pluripotent cell renewal was confirmed by DYRK knockdown in human embryonic stem cells. Using Wnt and the DYRK inhibitor ID-8,we have developed a novel and simple chemically defined xeno-free culture system that allows for long-term expansion of human pluripotent stem cells without FGF or TGFβ activation. These culture conditions do not include xenobiotic supplements,serum,serum replacement,or albumin. Using this culture system,we have shown that several human pluripotent cell lines maintained pluripotency (textgreater20 passages) and a normal karyotype and still retained the ability to differentiate into derivatives of all three germ layers. This Wnt-dependent culture system should provide a platform for complete replacement of growth factors with chemical compounds.
View Publication